scholarly journals Molecular Mechanisms Involved in the Pathogenesis of Alphavirus-Induced Arthritis

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Iranaia Assunção-Miranda ◽  
Christine Cruz-Oliveira ◽  
Andrea T. Da Poian

Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained within vitrosystems andin vivostudies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.

2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Neha Khosla ◽  
Seema Madhumal Thayil ◽  
Rajinder Kaur ◽  
Anup Kumar Kesavan

Abstract Background Tuberculosis (TB) remains an important public health problem since it is the major cause of elevated morbidity and mortality globally. Previous works have shown that Mycobacterium tuberculosis (Mtb); the prime causative agent of the deadly disease has dormancy survival regulator (DosR) regulon, a two-component regulatory system which controls the transcription of more than 50 genes. However, the structure and detailed functions of these DosR regulated genes are largely undetermined. Out of many DosR regulon genes, Rv3131 gets up regulated in hypoxic conditions and was believed to encode for a nitroreductase flavoprotein. The utilization of mycobacteria-specific model systems has greatly added to our understanding of the molecular mechanisms involved in the life cycle and pathogenesis of Mtb. Results In this study the non-pathogenic mycobacterial model organism Mycobacterium smegmatis (Msmeg) was used to reveal the structure and function of MSMEG_3955; which is a homologue of Rv3131 from Mtb. Using chromatography and spectroscopy techniques it was revealed that cofactor flavin mononucleotide (FMN) was bound to flavoprotein MSMEG_3955. Consistent with the homology modelling predictions, Circular Dichroism (CD) analysis indicated that the MSMEG_3955 is composed of 39.3% α-helix and 24.9% β-pleated sheets. In contrast to the current notions, the enzymatic assays performed in the present study revealed that MSMEG_3955 was not capable of reducing nitro substrates but showed NADPH dependent FMN oxidoreductase activity. Also, gel permeation chromatography, dynamic light scattering and native acidic gels showed that MSMEG_3955 exists as a homotrimer. Furthermore, the presence of NADPH dependent FMN oxidoreductase and homotrimeric existence could be an alternative function of the protein to help the bacteria survive in dormant state or may be involved in other biochemical pathways. Conclusion MSMEG_3955 is a FMN bound flavoprotein, which exits as a trimer under in vitro conditions. There is no disulphide linkages in between the three protomers of the homotrimer MSMEG_3955. It has a NADPH dependent FMN oxidoreductase activity.


2012 ◽  
Vol 87 (2) ◽  
pp. 252-256 ◽  
Author(s):  
J. Keiser ◽  
R. Adelfio ◽  
M. Vargas ◽  
P. Odermatt ◽  
S. Tesana

AbstractOpisthorchiasis, caused by the liver fluke Opisthorchis viverrini, a food-borne trematode, is an important public health problem; however, only a single drug, praziquantel is available. We investigated tribendimidine–praziquantel combinations against O. viverriniin vitro and in vivo. The IC50 values of 0.16 μg/ml and 0.05 μg/ml were determined for praziquantel and tribendimidine, respectively, against adult O. viverriniin vitro. When O. viverrini was exposed to both drugs simultaneously (using a drug ratio based on the IC50 (1:3.2)) a synergistic effect was calculated (combination index (CI) at the IC50= 0.7). A similar result was observed when drug addition in vitro was spaced by the respective half-lives of the drugs (a CI of 0.78 at the IC50 for tribendimidine followed by praziquantel and a CI of 0.47 at the IC50 for praziquantel followed by tribendimidine). In vivo median-effect dose (ED50) values of 191 mg/kg and 147 mg/kg were calculated for praziquantel and tribendimidine, respectively. Low to moderate worm burden reductions (38–62%) were observed in O. viverrini infected hamsters when both drugs were administered simultaneously or on subsequent days, pointing to antagonistic effects in vivo. Further studies are necessary to understand the striking differences between the in vitro and in vivo observations using combinations of praziquantel and tribendimidine on O. viverrini.


2012 ◽  
Vol 48 (2) ◽  
pp. R13-R29 ◽  
Author(s):  
Jerzy-Roch Nofer

Estrogens not only play a pivotal role in sexual development but are also involved in several physiological processes in various tissues including vasculature. While several epidemiological studies documented an inverse relationship between plasma estrogen levels and the incidence of cardiovascular disease and related it to the inhibition of atherosclerosis, an interventional trial showed an increase in cardiovascular events among postmenopausal women on estrogen treatment. The development of atherosclerotic lesions involves complex interplay between various pro- or anti-atherogenic processes that can be effectively studied onlyin vivoin appropriate animal models. With the advent of genetic engineering, transgenic mouse models of atherosclerosis have supplemented classical dietary cholesterol-induced disease models such as the cholesterol-fed rabbit. In the last two decades, these models were widely applied along within vitrocell systems to specifically investigate the influence of estrogens on the development of early and advanced atherosclerotic lesions. The present review summarizes the results of these studies and assesses their contribution toward better understanding of molecular mechanisms underlying anti- and/or pro-atherogenic effects of estrogens in humans.


2020 ◽  
Vol 16 (2) ◽  
pp. 104-116
Author(s):  
Anshul Shakya ◽  
Sushil Kumar Chaudary ◽  
Debapriya Garabadu ◽  
Hans Raj Bhat ◽  
Bibhuti Bhusan Kakoti ◽  
...  

Background: Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. Introduction: Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. Methods: The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. Results: A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. Conclusion: This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1129
Author(s):  
Aimilia-Christina Vagiona ◽  
Miguel A. Andrade-Navarro ◽  
Fotis Psomopoulos ◽  
Spyros Petrakis

Background: Several experimental models of polyglutamine (polyQ) diseases have been previously developed that are useful for studying disease progression in the primarily affected central nervous system. However, there is a missing link between cellular and animal models that would indicate the molecular defects occurring in neurons and are responsible for the disease phenotype in vivo. Methods: Here, we used a computational approach to identify dysregulated pathways shared by an in vitro and an in vivo model of ATXN1(Q82) protein aggregation, the mutant protein that causes the neurodegenerative polyQ disease spinocerebellar ataxia type-1 (SCA1). Results: A set of common dysregulated pathways were identified, which were utilized to construct cerebellum-specific protein-protein interaction (PPI) networks at various time-points of protein aggregation. Analysis of a SCA1 network indicated important nodes which regulate its function and might represent potential pharmacological targets. Furthermore, a set of drugs interacting with these nodes and predicted to enter the blood–brain barrier (BBB) was identified. Conclusions: Our study points to molecular mechanisms of SCA1 linked from both cellular and animal models and suggests drugs that could be tested to determine whether they affect the aggregation of pathogenic ATXN1 and SCA1 disease progression.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Chun-Chieh Chen ◽  
Munisamy Sureshbabul ◽  
Huei-Wen Chen ◽  
Yu-Shuang Lin ◽  
Jen-Yi Lee ◽  
...  

Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cellsin vitroandin vivo. Curcumin significantly inhibits cell migration, invasion, and colony formationin vitroand reduces tumor growth and liver metastasisin vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells.


Reproduction ◽  
2021 ◽  
Author(s):  
Fuhua Xu ◽  
Shally Wolf ◽  
O'ryai Green ◽  
Jing Xu

Vitamin D (VD) is a secosteroid hormone synthesized predominantly in the skin upon ultraviolet light exposure, which can also be obtained from dietary sources. In target cells, the bioactive VD binds to specific VD receptor to regulate downstream transcription of genes that are involved in a wide range of cellular processes. There is increasing recognition that the proper physiological levels of VD are critical for optimizing reproductive potential in women. The direct VD action in the ovary was first suggested in the 1980s. Since then, research has attempted to determine the role of VD in follicular development and oocyte maturation in animal models and clinical settings. However, data published to date are inconclusive due to the complexity in VD metabolism and the fact that VD actions are pervasive in regulating physiological functions in various systems, including the reproductive, endocrine and nervous systems that control reproduction. This review summaries in vitro, in vivo, and clinical evidence regarding VD metabolism and signaling in the ovary, as well as VD-regulated or VD-associated ovarian follicular development, steroidogenic function, and oocyte maturation. It is suggested that adequate animal models are needed for well-controlled studies to unravel molecular mechanisms of VD action in the ovary. For clinical studies, follicular development and function may be evaluated more effectively in a relatively homogeneous patient population under a well-controlled experimental design. A comprehensive understanding of VD-regulated folliculogenesis and oogenesis will provide critical insight into the impact of VD in female reproductive health.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sara Tirendi ◽  
Sergio Claudio Saccà ◽  
Stefania Vernazza ◽  
Carlo Traverso ◽  
Anna Maria Bassi ◽  
...  

Glaucoma is a multifactorial syndrome in which the development of pro-apoptotic signals are the causes for retinal ganglion cell (RGC) loss. Most of the research progress in the glaucoma field have been based on experimentally inducible glaucoma animal models, which provided results about RGC loss after either the crash of the optic nerve or IOP elevation. In addition, there are genetically modified mouse models (DBA/2J), which make the study of hereditary forms of glaucoma possible. However, these approaches have not been able to identify all the molecular mechanisms characterizing glaucoma, possibly due to the disadvantages and limits related to the use of animals. In fact, the results obtained with small animals (i.e., rodents), which are the most commonly used, are often not aligned with human conditions due to their low degree of similarity with the human eye anatomy. Although the results obtained from non-human primates are in line with human conditions, they are little used for the study of glaucoma and its outcomes at cellular level due to their costs and their poor ease of handling. In this regard, according to at least two of the 3Rs principles, there is a need for reliable human-based in vitro models to better clarify the mechanisms involved in disease progression, and possibly to broaden the scope of the results so far obtained with animal models. The proper selection of an in vitro model with a “closer to in vivo” microenvironment and structure, for instance, allows for the identification of the biomarkers involved in the early stages of glaucoma and contributes to the development of new therapeutic approaches. This review summarizes the most recent findings in the glaucoma field through the use of human two- and three-dimensional cultures. In particular, it focuses on the role of the scaffold and the use of bioreactors in preserving the physiological relevance of in vivo conditions of the human trabecular meshwork cells in three-dimensional cultures. Moreover, data from these studies also highlight the pivotal role of oxidative stress in promoting the production of trabecular meshwork-derived pro-apoptotic signals, which are one of the first marks of trabecular meshwork damage. The resulting loss of barrier function, increase of intraocular pressure, as well the promotion of neuroinflammation and neurodegeneration are listed as the main features of glaucoma. Therefore, a better understanding of the first molecular events, which trigger the glaucoma cascade, allows the identification of new targets for an early neuroprotective therapeutic approach.


Sign in / Sign up

Export Citation Format

Share Document