EndMT: Potential Target of H2S Against Atherosclerosis

2020 ◽  
Vol 27 ◽  
Author(s):  
Hui-Ting Liu ◽  
Zhi-Xiang Zhou ◽  
Zhong Ren ◽  
Sai Yang ◽  
Lu-Shan Liu ◽  
...  

Abstract:: Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injuryand atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for antiatherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. Because H2S has anti-inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing. but anti-atherosclerosis' molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti-EndMT effect is discussed in this review.

2022 ◽  
Author(s):  
Wenli Yang ◽  
William G Robichaux ◽  
Fang C Mei ◽  
Wel Lin ◽  
Li Li ◽  
...  

Protein SUMOylation plays an essential role in maintaining cellular homeostasis when cells are under stress. However, precisely how SUMOylation is regulated, and a molecular mechanism linking cellular stress to SUMOylation remains elusive. Herein, we report that cAMP, a major stress-response second messenger, acts through Epac1 as a regulator of cellular SUMOylation. The Epac1-associated proteome is highly enriched with components of the SUMOylation pathway. Activation of Epac1 by intracellular cAMP triggers phase separation and the formation of nuclear condensates containing Epac1 and general components of the SUMOylation machinery to promote cellular SUMOylation. Furthermore, genetic knockout of Epac1 obliterates oxidized low-density lipoprotein induced cellular SUMOylation in macrophages, leading to suppression of foam cell formation. These results provide a direct nexus connecting two major cellular stress responses to define a molecular mechanism in which cAMP regulates the dynamics of cellular condensates to modulate protein SUMOylation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Xing ◽  
Xin Zhou ◽  
Ai-Hong Li ◽  
Hui-Jin Li ◽  
Chun-Xia He ◽  
...  

Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Atherosclerosis is the main pathological basis of cardiovascular diseases and it is closely associated with hyperlipidemia, endothelial injury, macrophage-derived foam cells formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota. Various symptomatic treatments, that are currently used to inhibit atherosclerosis, need to be administered in long term and their adverse effects cannot be ignored. Berberine (BBR) has beneficial effects on atherosclerosis through regulating multiple aspects of its progression. This review highlights the recent advances in understanding the anti-atherosclerosis mechanism of BBR. BBR alleviated atherosclerosis by attenuation of dyslipidemia, correction of endothelial dysfunction, inhibition of macrophage inflammation and foam cell formation, activation of macrophage autophagy, regulation of the proliferation and migration of VSMCs, attenuation of platelet aggregation, and modulation of gut microbiota. This review would provide a modern scientific perspective to further understanding the molecular mechanism of BBR attenuating atherosclerosis and supply new ideas for atherosclerosis management.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Dan Yan ◽  
Yujuan He ◽  
Jun Dai ◽  
Lili Yang ◽  
Xiaoyan Wang ◽  
...  

Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.


2018 ◽  
Vol 27 (8) ◽  
pp. 1235-1248
Author(s):  
Wei Zhang ◽  
Wan Xu ◽  
Wenli Chen ◽  
Quan Zhou

MG132 is a pivotal inhibitor of the ubiquitin-proteasome system (UPS), and rapamycin (RAPA) is an important inducer of autophagy. MG132 and RAPA have been shown to be effective agents that can cure multiple autoimmune diseases by reducing inflammation. Although individual MG132 and RAPA showed protective effects for atherosclerosis (AS), the combined effect of these two drugs and its molecular mechanism are still unclear. In this article we investigate the regulation of oxidative modification of low-density lipoprotein (ox-LDL) stress and foam cell formation in the presence of both proteasome inhibitor MG132 and the autophagy inducer RAPA to uncover the molecular mechanism underlying this process. We established the foam cells model by ox-LDL and an animal model. Then, we tested six experimental groups of MG132, RAPA, and 3MA drugs. As a result, RAPA-induced autophagy reduces accumulation of polyubiquitinated proteins and apoptosis of foam cells. The combination of MG132 with RAPA not only suppressed expression of the inflammatory cytokines and formation of macrophage foam cells, but also significantly affected the NF-κB signaling pathway and the polarization of RAW 264.7 cells. These data suggest that the combination of proteasome inhibitor and autophagy inducer ameliorates the inflammatory response and reduces the formation of macrophage foam cells during development of AS. Our research provides a new way to suppress vascular inflammation and stabilize plaques of late atherosclerosis.


Author(s):  
K. Florian Klemp ◽  
J.R. Guyton

The earliest distinctive lesions in human atherosclerosis are fatty streaks (FS), characterized initially by lipid-laden foam cell formation. Fibrous plaques (FP), the clinically significant lesions, differ from FS in several respects. In addition to foam cells, the FP also exhibit fibromuscular proliferation and a necrotic core region rich in extracellular lipid. The possible transition of FS into mature FP has long been debated, however. A subset of FS described by Katz etal., was intermediate in lipid composition between ordinary FS and FP. We investigated this hypothesis by electron microscopic cytochemistry by employing a tissue processing technique previously described by our laboratory. Osmium-tannic acid-paraphenylenediamine (OTAP) tissue preparation enabled ultrastructural analysis of lipid deposits to discern features characteristic of mature fibrous plaques.


Sign in / Sign up

Export Citation Format

Share Document