Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA dependent RNA polymerase (RdRp)

2021 ◽  
Vol 28 ◽  
Author(s):  
Shabana Bibi ◽  
Mohammad Mehedi Hasan ◽  
Yuan-Bing Wang ◽  
Stavros P. Papadakos ◽  
Hong Yu

Background: SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARS-CoV-2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. Objective: The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. Methods: Fungal derivative “Cordycepin” was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. Results: The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. Conclusion: Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARS-CoV-2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).

2011 ◽  
Vol 92 (7) ◽  
pp. 1607-1616 ◽  
Author(s):  
Ji-Hye Lee ◽  
Intekhab Alam ◽  
Kang Rok Han ◽  
Sunyoung Cho ◽  
Sungho Shin ◽  
...  

Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.


2021 ◽  
Author(s):  
Nokukhanya Gumede ◽  
Kgothatso E. Machaba ◽  
Umar Ndagi ◽  
Hezekiel M. Kumalo ◽  
Ndumiso N. Mhlongo

Abstract Tuberculosis (TB) remains a long-standing burdening disease to control worldwide. The lengthy current TB treatment, which boasts with unbearable adverse effects, and frequent emergence of drug resistant strains of M. tuberculosis lays an increasing burden. This behests urgent discovery and development of alternative novel medicine to alleviate TB. In this report, in silico methods were applied to examine the propensity of W. salutaris active compounds as potential inhibitors of M. tuberculosis fatty acid biosynthesis protein (FabF). Thirteen compounds were virtually screened against FabF and subjected to molecular dynamics simulations and post-dynamics analyses to examine their inhibitory potential. Betulinic acid, ursolic acid and ursolic acid acetate had the best binding energies and hence the best inhibitory potential against FabF and desirable cytotoxicity profile. These compounds bind and interact with FabF active site residues to exert their inhibitory potential. Findings in this preliminary report warrant further experimental validation towards the development of these compounds as potential drugs targeting FabF in the treatment of tuberculosis.


2020 ◽  
Author(s):  
Raphael J. Eberle ◽  
Danilo S. Olivier ◽  
Marcos S. Amaral ◽  
Dieter Willbold ◽  
Raghuvir K. Arni ◽  
...  

AbstractSince the first report of a new pneumonia disease in December 2019 (Wuhan, China) up to now WHO reported more than 50 million confirmed cases and more than one million losses, globally. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide resulting in a pandemic of unprecedented magnitude. To date, no clinically safe drug or vaccine is available and the development of molecules to combat SARS-CoV-2 infections is imminent. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is the repurposing of clinically developed drugs, e.g., anti-parasitic drugs. The results described in this study demonstrate the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules present a competitive and non-competitive mode of inhibition, respectively, with IC50 and KD values in low μM range. Using docking and molecular dynamics simulations we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin in combination with quinacrine showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. The identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease. Drug repositioning offers hope to the SARS-CoV-2 control.


2020 ◽  
Vol 69 (6) ◽  
pp. 864-873 ◽  
Author(s):  
Rudramani Pokhrel ◽  
Prem Chapagain ◽  
Jessica Siltberg-Liberles

Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics. Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication. Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen. Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects. Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1166
Author(s):  
Krishnaprasad Baby ◽  
Swastika Maity ◽  
Chetan H. Mehta ◽  
Akhil Suresh ◽  
Usha Y. Nayak ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (Mpro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dimitrios Vlachakis ◽  
Argiro Karozou ◽  
Sophia Kossida

Currently not much is known about the H7N9 strain, and this is the major drawback for a scientific strategy to tackle this virus. Herein, the 3D complex structure of the H7N9 RNA-dependent RNA polymerase has been established using a repertoire of molecular modelling techniques including homology modelling, molecular docking, and molecular dynamics simulations. Strikingly, it was found that the oligonucleotide cleft and tunnel in the H7N9 RNA-dependent RNA polymerase are structurally very similar to the corresponding region on the hepatitis C virus RNA-dependent RNA polymerase crystal structure. A direct comparison and a 3D postdynamics analysis of the 3D complex of the H7N9 RNA-dependent RNA polymerase provide invaluable clues and insight regarding the role and mode of action of a series of interacting residues on the latter enzyme. Our study provides a novel and efficiently intergraded platform with structural insights for the H7N9 RNA-dependent RNA Polymerase. We propose that future use and exploitation of these insights may prove invaluable in the fight against this lethal, ongoing epidemic.


2020 ◽  
Vol 5 (4) ◽  
pp. 255-267
Author(s):  
Priyanka Dhar ◽  
Paushali Roy

The recent coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has offered a unique challenge for human survival. However, there is no available known prophylaxis, therapeutic intervention, and vaccine candidate against SARS-CoV-2 to date. We aimed towards identifying novel phytoligands from widely available botanical resources which could serve as potential inhibitors against SARS-CoV-2. Based on literature review, database search, ADMET, and drug-likeness, 55 phytoligands and 8 synthetic repurposing drugs were screened and tested against SARS-CoV-2 spike glycoprotein, main protease, papain-like protease, and RNA-dependent RNA polymerase using molecular docking and protein-ligand interaction. All phytoligands and repurposing drugs showed binding affinity based inhibitory potential against the viral proteins. The highest binding affinities of phytoligands towards antiviral targets were exhibited by colchicine and oleic acid, and that of repurposing drugs was shown by saquinavir and nelfinavir. Capsaicin, oleic acid, azithromycin, nelfinavir, remdesivir, and saquinavir were acted as plausible broad-spectrum inhibitors. Hydrogen bonds and hydrophobic interactions of amino acids were varied significantly within the conserved domain along with glutamic acid richness. Further investigation should be carried out to obtain the synergistic effect using cell-based assays, animal models, and clinical trials to discover novel phytomedicine against SARS-CoV-2.


Author(s):  
Clement Agoni ◽  
Mahmoud E.S. Soliman

Aim: We seek to provide an understanding of the binding mechanism of Remdesivir, provide structural and conformational implications on SARS-CoV-2 virus RNA-dependent RNA polymerase upon its binding and identify its crucial pharmacophoric moieties. Background: The coronavirus disease of 2019 (COVID-19) pandemic has infected over a million people, with over 65,000 deaths as of the first quarter of 2020. The current limitation of effective treatment options with no approved vaccine or targeted therapeutics for the treatment of COVID-19 has posed serious global health threats. This has necessitated several drug and vaccine development efforts across the globe. To date, the farthest in the drug development pipeline so far is Remdesivir. Objectives: We perform molecular dynamics simulation, quantify the energy contributions of binding site residues using per-residue energy decomposition calculations, and subsequently generate a pharmacophore model for the identification of potential SARS-CoV-2 virus RNA-dependent RNA polymerase inhibitors. Methods: Integrative molecular dynamics simulations and thermodynamic calculations coupled with advanced postmolecular dynamics analysis techniques were employed. Results: Our analysis showed that the modulatory activity of Remdesivir is characterized by an extensive array of highaffinity and consistent molecular interactions with specific active site residues that anchor Remdemsivir within the binding pocket for efficient binding. These residues are ASP452, THR456, ARG555, THR556, VAL557, ARG624, THR680, SER681, and SER682. Results also showed that Remdesivir binding, induces minimal individual amino acid perturbations, subtly interferes with deviations of C-α atoms and restricts the systematic transition of SARS-CoV-2 RNA-dependent RNA polymerase from the “buried” hydrophobic region to the “surface-exposed” hydrophilic region. We also mapped a pharmacophore model based on observed high-affinity interactions with SARS-CoV-2 virus RNA-dependent RNA polymerase, which showcased the crucial functional moieties of Remdesivir and was subsequently employed for virtual screening. Conclusion: The structural insights and the optimized pharmacophoric model provided would augment the design of improved analogs of Remdesivir that could expand treatment options for COVID-19.


2021 ◽  
Author(s):  
Jihye Lee ◽  
JinAh Lee ◽  
Hyeon Ju Kim ◽  
Meehyun Ko ◽  
Youngmee Jee ◽  
...  

SARS-CoV-2 is a causative agent of COVID-19 pandemic and the development of therapeutic interventions is urgently needed. So far, monoclonal antibodies and drug repositioning are the main methods for drug development and this effort was partially successful. Since the beginning of COVID-19 pandemic, the emergence of SARS-CoV-2 variants has been reported in many parts of the world and the main concern is whether the current vaccines and therapeutics are still effective against these variant viruses. The viral entry and viral RNA-dependent RNA polymerase (RdRp) are the main targets of current drug development, thus the inhibitory effects of TMPRSS2 and RdRp inhibitors were compared among the early SARS-CoV-2 isolate (lineage A) and the two recent variants (lineage B.1.1.7 and lineage B.1.351) identified in the UK and South Africa, respectively. Our in vitro analysis of viral replication showed that the drugs targeting TMPRSS2 and RdRp are equally effective against the two variants of concern.


Sign in / Sign up

Export Citation Format

Share Document