Comprehensive Review on Graphene Oxide for Use in Drug Delivery System

2020 ◽  
Vol 27 (22) ◽  
pp. 3665-3685 ◽  
Author(s):  
Muhammad Daniyal ◽  
Bin Liu ◽  
Wei Wang

Motivated by the accomplishment of carbon nanotubes (CNTs), graphene and graphene oxide (GO) has been widely investigated in the previous studies as an innovative medication nanocarrier for the loading of a variety of therapeutics as well as anti-cancer medications, poor dissolvable medications, antibiotics, antibodies, peptides, DNA, RNA and genes. Graphene provides the ultra-high drug-loading efficiency due to the wide surface area. Graphene and graphene oxide have been widely investigated for biomedical applications due to their exceptional qualities: twodimensional planar structure, wide surface area, chemical and mechanical constancy, sublime conductivity and excellent biocompatibility. Due to these unique qualities, GO applications provide advanced drug transports frameworks and transports of a broad range of therapeutics. In this review, we discussed the latest advances and improvements in the uses of graphene and GO for drug transport and nanomedicine. Initially, we have described what is graphene and graphene oxide. After that, we discussed the qualities of GO as a drug carrier, utilization of GO in drug transport applications, targeted drug transport, transport of anticancer medications, chemical control medicine releasee, co-transport of different medications, comparison of GO with CNTs, nano-graphene for drug transport and at last, we have discussed the graphene toxicity. Finally, we draw a conclusion of current expansion and the potential outlook for the future.

2018 ◽  
Vol 18 (2) ◽  
pp. 302-311
Author(s):  
Shulin Dai ◽  
Yucheng Feng ◽  
Shuyi Li ◽  
Yuxiao Chen ◽  
Meiqing Liu ◽  
...  

Background: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. </P><P> Aims/Methods: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. Result: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


2010 ◽  
Vol 654-656 ◽  
pp. 2265-2268
Author(s):  
Pu Wang Li ◽  
Yi Chao Wang ◽  
Zheng Peng ◽  
Ling Xue Kong

A combined drug loaded system containing two most common anti-cancer drugs 5-fluorouracil (5-FU) and leucovorin (LV) was designed and prepared by ion crosslinking technology. The resulted nanoparticles are spherical in shape, and the particle size becomes larger when drug combination are loaded. Efficient drug encapsulation efficiency (EE) and drug loading (LC) are obtained due to the strong interaction between drugs and polymer. The combined drugs are distributed in the particles in amorpholous state which are demonstrated by the XRD results.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2846
Author(s):  
Seung Hyuk Im ◽  
Dam Hyeok Im ◽  
Su Jeong Park ◽  
Justin Jihong Chung ◽  
Youngmee Jung ◽  
...  

Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77818-77829 ◽  
Author(s):  
Rana Imani ◽  
Wei Shao ◽  
Shahriar Hojjati Emami ◽  
Shahab Faghihi ◽  
Satya Prakash

The poor dispersibility of graphene-based nano-materials in aqueous media is a crucial limitation in their biological applications.


2020 ◽  
Vol 8 (3) ◽  
pp. 949-959 ◽  
Author(s):  
Yuchen Wu ◽  
Shixian Lv ◽  
Yongjuan Li ◽  
Hua He ◽  
Yong Ji ◽  
...  

The introduction of donor-receptor coordination between micelles and drug payloads provides a precise co-delivery strategy for two different chemo-drugs with high drug loading and ROS responsiveness.


RSC Advances ◽  
2014 ◽  
Vol 4 (54) ◽  
pp. 28807-28813 ◽  
Author(s):  
Guoqiang Xu ◽  
Pengwu Xu ◽  
Dongjian Shi ◽  
Mingqing Chen

A graphene oxide based ternary composite was synthesized for targeted drug carrier.


2015 ◽  
Vol 1118 ◽  
pp. 227-236 ◽  
Author(s):  
Fei Jun Wang ◽  
Fang Shu Lu ◽  
Meng Cui ◽  
Zi Qiang Shao

The biocompatible microcapsule of carboxymethyl cellulose/chitosan is obtained through two steps: firstly, carboxymethyl cellulose (CMC) and chitosan (CS) layer-by-layer self-assemble onto melamine formaldehyde (MF) microspheres; secondly, MF template is removed. The electrostatic interaction between CMC and CS, solution ionic strength and growth of LbL membrane are investigated by IR spectra and UV-vis spectra. The morphology and size of hollow microcapsules is observed by SEM and TEM. The results show that the hollow microcapsules are spherical shape with a little distortion and the shell average thickness of one bilayer of CMC/chitosan polyelectrolyte complex was 25 nm. The result for drug delivery and release experiments, tetracycline is as the drug model, shows that tetracycline is encapsulated with a high drug loading efficiency and could be sustained release.


Sign in / Sign up

Export Citation Format

Share Document