A comprehensive review on the ethnopharmacology, phytochemistry, ‎pharmacology, and toxicology of the Mandragora genus; from folk ‎medicine to the modern

2021 ◽  
Vol 27 ◽  
Author(s):  
Taha Monadi ◽  
Mohammad Azadbakht ◽  
Amirhossein Ahmadi ◽  
Aroona Chabra

The Mandragora genus (Solanaceae) is well known for its association with myths and has been used in herbal medicine since ancient times. This extensive literature review synthesizes the information currently available on the ethnobotany, Persian medicine (PM), traditional use, phytochemistry, pharmacology, and toxicity profile of Mandragora spp. The electronic search engines Scopus, Web of Science, PubMed, Google Scholar, and ScienceDirect were searched using keywords such as Mandragora, mandrake, phytochemistry, ethnopharmacology, Persian medicine, ethnobotany, and toxicity. Pertinent information was also extracted from books on PM, ethnomedicine, and dissertations. Mandragora species are found throughout the Mediterranean basin, Europe, Northern Africa, and the Himalayan regions. Traditionally, the species have been used to treat insomnia, dysuria, hemorrhoids, rheumatic pain, toothache, melancholia, and depression, among many others. In vitro studies have confirmed the biological properties of Mandragora spp. crude extracts, such as antioxidant, immunomodulatory, and enzyme-inhibiting effects. Various phytochemicals, such as alkaloids (e.g., atropine and scopolamine), coumarins (e.g., umbelliferone and scopoletin), withanolides (e.g., salpichrolide C), and lipid-like compounds (e.g., beta-sitosterol), have been isolated from Mandragora spp. Some of the pure compounds composing this plant are highlighted for their biologically active effects, including anticholinergic, antidepressant, antioxidant, and anti-inflammatory effects. Modern identifications of biological activities of the compounds isolated from Mandragora, especially alkaloids, support its traditional uses (e.g., for their narcotic effects). More in vivo studies are required to further understanding and most effectively utilize this genus, and extensive toxicological studies are required to validate its safety in clinical use.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5250
Author(s):  
Hae-Jin Lee ◽  
Hae-Lim Kim ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Seung-Hwan Yang

Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety of SR, including SB and SN, need to be conducted.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 228 ◽  
Author(s):  
Koji Suzuki ◽  
Masahiro Terasawa

Monostroma nitidum is a green single-cell layered algae that grows on the southwest coast of Japan. It is often used for salad ingredients, boiled tsukudani, soups, etc., due to its health benefits. M. nitidum is composed of many cell aggregates, and the various substances that fill the intercellular space are dietary fibers, vitamins, and minerals. Rhamnan sulfate (RS), a sulfated polysaccharide, is main the component of the fiber extracted from M. nitidum. Recently, some biological properties of RS have been demonstrated by in vitro and in vivo studies that probably protect human subjects from viruses and ameliorate vascular dysfunction caused by metabolic disorders, especially lifestyle-related diseases. In this review, we focus on the antithrombotic effects of RS and introduce its antiviral and other biological activities.


2017 ◽  
Vol 2 (2) ◽  
pp. 142 ◽  
Author(s):  
R. Kumar ◽  
S. Vijayalakshmi ◽  
S. Nadanasabapathi

<p>Flavonoids are natural antioxidants derived from plant pigments and commonly found in agricultural produce such as fruits, vegetables, and also in beverages like tea and wine. Quercetin is the most important flavonoid which belongs to the class of flavonol. Quercetin is a vital biologically active compound, which is present in many products, such as onion (<em>Allium cepa</em>), black tea (<em>Camellia sinensis</em>), Broccoli (<em>Brassica oleracea</em> var<em>. italic</em>), and also in red wine and green tea, It is widely used in medicine and pharmaceutics. In particular, it is used for cancer treatment; as it restrains the growth of cancer cells. Earlier some of computational investigations of this molecule were reported in literature, but they were made at low theory level. Quercetin provided many health promoting benefits, like cardiovascular properties, cancer reducing agent, Anti-inflammatory, asthma and many more. That is why the further investigation of this molecule is important. The main important of this review is to understanding of the structure of quercetin and corresponding biological properties of quercetin expressed in vitro studies, absorption is critical, but in vivo studies, better absorbed antioxidant were observed like vitamin C, further reported studies on effect of food processing, health benefits, storage effects, and evaluate its safety and dosage.</p>


2020 ◽  
Vol 26 ◽  
Author(s):  
Bahare Salehi ◽  
Javad Sharifi-Rad ◽  
Jesús Herrera-Bravo ◽  
Luis A. Salazar ◽  
Carla Delporte ◽  
...  

: The native flora of Chile has unique characteristics due to the geographical situation of the country, with the vast desert in the North, Patagonia in the South, the Andean Mountains on the east and the Pacific Ocean on the west. This exclusivity is reflected in high concentrations of phytochemicals in the fruits and leaves of its native plants. Some examples are Aristotelia chilensis (Molina) Stuntz (maqui), Berberis microphylla G. Forst. (calafate), Peumus boldus Molina (boldo), Ribes magellanicum Poir. (Magellan currant), Ugni molinae Turcz. (murtilla), Rubus geoides Sm. (miñe miñe), Drimys winteri J.R.Forst. & G.Forst. (canelo), Luma apiculata (DC.) Burret (arrayán) distributed throughout the entire Chilean territory. Some of these Chilean plants have been used for centuries in the country's traditional medicine. The most recent studies of phytochemical characterization of parts of Chilean plants show a wide spectrum of antioxidant compounds, phenolic components, terpenoids and alkaloids, which have shown biological activity in both in vitro and in vivo studies. This manuscript covers the entire Chilean territory characterizing the phytochemical profile and reporting some of its biological properties, focusing mainly on antioxidant, anti-inflammatory, antimicrobial, chemopreventive and cytotoxic activity, and potential against diabetes, metabolic syndrome and gastrointestinal disorders.


Author(s):  
Kalaiseziyen Pavithra ◽  
Ganapathy Saravanan

Nature is an amazing source for food, shelter, clothing and medicine. An impressive number of modern drugs are isolated from many sources like plants, animals and microbes. The development of natural products from traditional medicines is of great importance to society. Modern concepts and methodologies with abundant clinical studies, unique diversity of chemical structures and biological activities aid the modern drug discovery process. Kedrostis foetidissima (Jacq.) Cogn., a traditional medicinal plant of the Cucurbitaceae family, is found in India, Sri Lanka, Ethiopia and Western Malaysia. Almost all parts of the plant are used in traditional systems of medicines and reported having medicinal properties in both in vitro and in vivo studies. In the last few years, extensive research work had been carried out using extracts and isolated phytoconstituents from Kedrostis foetidissima to confirm its pharmacology and biological activities. Many scientific reports show that crude extracts and extensive numbers of phytochemical constituents isolated from Kedrostis foetidissima have activities like antimicrobial, antioxidant, anticancer, gastroprotective, anti-inflammatory and various other important medicinal properties. The therapeutic properties of the plants are mainly attributed to the existence of phytoconstituents like phenols, alkaloids, flavonoids, tannins, terpenoids and steroids. This comprehensive review in various aspects gave a brief overview of phytoconstituents, nutritional values and medicinal property of the plant and might attract the researchers to explore its medicinal activity by discovering novel biologically active compounds that can serve as a lead compound in pharmaceutical and food industry.


Author(s):  
Ewelyn Cintya Felipe dos Santos ◽  
Janaina Carla Barbosa Machado ◽  
Magda Rhayanny Assunção Ferreira ◽  
Luiz Alberto Lira Soares

Background: Acanthospermum hispidum DC is a medicinal plant present in America, Africa, Australia, India, Hawaii, and Brazil. In Brazil, the species is used in the treatment of gastrointestinal, respiratory disorders and has expectorant action. In the literature there are studies on the chemical composition of the species, with reports of the presence of alkaloids, flavonoids, hydrolyzable tannins, terpenes, and steroids. In addition, several studies have reported in vitro and in vivo studies that prove the biological properties of extracts and compounds isolated from different organs of the A. hispidum plant, including: hepatoprotectors, antioxidants, antimicrobials and antiparasitic. Objective: The objective of this review is to update the knowledge about the phytochemical, pharmacological and toxicity aspects of A. hispidum, to contribute to the recognition of the species and direct new studies. Methods: An extensive bibliographic search was conducted in different scientific databases. Results: The presence of different chemical constituents in A. hispidum have been identified, among them flavonoids, tannins, terpenes, and steroids. Additionally, antimicrobial and antiparasitic activities were mainly attributed to the species, and other activities not previously described were presented, such as anticholinesterase, antioxidant, hepatoprotective, and hypoglycemic, all based on results of in vitro and in vivo studies. Finally, no reports of toxic effects were found in the in vitro and in vivo tests. After analyzing the articles, it was evidenced that other experiments, with different models using animals, are essential to evaluate the possible mechanisms of action of the extracts and compounds isolated of A. hispidum. Conclusion: Therefore, this review may contribute to the recognition of the importance of A. hispidum and its potential as a medicinal plant and may also guide the conduct of future research regarding the constituents, biological activities, and toxicity of the species.


Author(s):  
Paweł Bakun ◽  
Beata Czarczynska-Goslinska ◽  
Tomasz Goslinski ◽  
Sebastian Lijewski

AbstractAzulene is an aromatic hydrocarbon that possesses a unique chemical structure and interesting biological properties. Azulene derivatives, including guaiazulene or chamazulene, occur in nature as components of many plants and mushrooms, such as Matricaria chamomilla, Artemisia absinthium, Achillea millefolium, and Lactarius indigo. Due to physicochemical properties, azulene and its derivatives have found many potential applications in technology, especially in optoelectronic devices. In medicine, the ingredients of these plants have been widely used for hundreds of years in antiallergic, antibacterial, and anti-inflammatory therapies. Herein, the applications of azulene, its derivatives and their conjugates with biologically active compounds are presented. The potential use of these compounds concerns various areas of medicine, including anti-inflammatory with peptic ulcers, antineoplastic with leukemia, antidiabetes, antiretroviral with HIV-1, antimicrobial, including antimicrobial photodynamic therapy, and antifungal.


2008 ◽  
Vol 3 (7) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Guy P. P. Kamatou ◽  
Alvaro M. Viljoen

Since the earliest times fragrant materials have been used in rituals. Today, a lucrative industry has developed to produce and deliver fragrances and aromatic chemicals with various applications in modern society. Linalool, a much sought after compound in the flavor and fragrance industry is a monoterpene alcohol which occurs naturally in many aromatic plants. Linalool and linalool-rich essential oils are known to exhibit various biological activities such as antimicrobial, anti-inflammatory, anticancer, anti-oxidant properties and several in vivo studies have confirmed various effects of linalool on the central nervous system. The applications of linalool are not confined to simply adding or enhancing a specific scent to domestic products such as soaps, detergents and shampoos. Linalool also plays an import role in nature as a key compound in the complex pollination biology of various plant species to ensure reproduction and survival. Linalool is also a key compound for the industrial production of a variety of fragrance chemicals such as geraniol, nerol, citral and its derivatives, as well as a lead compound in the synthesis of vitamins A and E. The repellent properties of linalool on various crop-destroying insects has been well documented accentuating the application of this molecule in eco-friendly pest management. This review aims to highlight the various biological properties of linalool and to emphasize the value of linalool and linalool-rich essential oils in phytotherapy.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


Sign in / Sign up

Export Citation Format

Share Document