Ethnopharmacology, Phytochemistry and Biological Activities of Native Chilean Plants

2020 ◽  
Vol 26 ◽  
Author(s):  
Bahare Salehi ◽  
Javad Sharifi-Rad ◽  
Jesús Herrera-Bravo ◽  
Luis A. Salazar ◽  
Carla Delporte ◽  
...  

: The native flora of Chile has unique characteristics due to the geographical situation of the country, with the vast desert in the North, Patagonia in the South, the Andean Mountains on the east and the Pacific Ocean on the west. This exclusivity is reflected in high concentrations of phytochemicals in the fruits and leaves of its native plants. Some examples are Aristotelia chilensis (Molina) Stuntz (maqui), Berberis microphylla G. Forst. (calafate), Peumus boldus Molina (boldo), Ribes magellanicum Poir. (Magellan currant), Ugni molinae Turcz. (murtilla), Rubus geoides Sm. (miñe miñe), Drimys winteri J.R.Forst. & G.Forst. (canelo), Luma apiculata (DC.) Burret (arrayán) distributed throughout the entire Chilean territory. Some of these Chilean plants have been used for centuries in the country's traditional medicine. The most recent studies of phytochemical characterization of parts of Chilean plants show a wide spectrum of antioxidant compounds, phenolic components, terpenoids and alkaloids, which have shown biological activity in both in vitro and in vivo studies. This manuscript covers the entire Chilean territory characterizing the phytochemical profile and reporting some of its biological properties, focusing mainly on antioxidant, anti-inflammatory, antimicrobial, chemopreventive and cytotoxic activity, and potential against diabetes, metabolic syndrome and gastrointestinal disorders.

2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2021 ◽  
Vol 25 ◽  
Author(s):  
Parul Grover ◽  
Monika Bhardwaj ◽  
Garima Kapoor ◽  
Lovekesh Mehta ◽  
Roma Ghai ◽  
...  

: The heterocyclic compounds have a great significance in medicinal chemistry because they have extensive biological activities. Cancer is globally the leading cause of death and it is a challenge to develop an appropriate treatment for the management of cancer. Continuous efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogen-containing heterocycles have received noteworthy attention due to their wide and distinctive pharmacological activities. One of the most important nitrogen-containing heterocycles in medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties. This scaffold is an important pharmacophore and is considered a privileged structure. The various substituted quinazolines displayed anticancer activity against different types of cancer. This review highlights the recent advances in quinazoline based molecules as anticancer agents. Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline containing anticancer compounds is also incorporated in the review.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 228 ◽  
Author(s):  
Koji Suzuki ◽  
Masahiro Terasawa

Monostroma nitidum is a green single-cell layered algae that grows on the southwest coast of Japan. It is often used for salad ingredients, boiled tsukudani, soups, etc., due to its health benefits. M. nitidum is composed of many cell aggregates, and the various substances that fill the intercellular space are dietary fibers, vitamins, and minerals. Rhamnan sulfate (RS), a sulfated polysaccharide, is main the component of the fiber extracted from M. nitidum. Recently, some biological properties of RS have been demonstrated by in vitro and in vivo studies that probably protect human subjects from viruses and ameliorate vascular dysfunction caused by metabolic disorders, especially lifestyle-related diseases. In this review, we focus on the antithrombotic effects of RS and introduce its antiviral and other biological activities.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2046 ◽  
Author(s):  
Bianca Eugenia Ștefănescu ◽  
Katalin Szabo ◽  
Andrei Mocan ◽  
Gianina Crişan

Some species of the Ericaceae family have been intensively studied because of the beneficial health impact, known since ancient times, of their chemical components. Since most studies focus on the effects of fruit consumption, this review aims to highlight the phenolic components present in the leaves. For this purpose, five species from Ericaceae family (bilberry—Vaccinium myrtillus L., lingonberry—V. vitis-idaea L., bog bilberry—V. uliginosum L., blueberry—V. corymbosum L. and bearberry—Arctostapylos uva-ursi L.) were considered, four of which can be found in spontaneous flora. The chemical composition of the leaves revealed three major phenolic compounds: chlorogenic acid, quercetin and arbutin. The health promoting functions of these compounds, such as antioxidant and anti-inflammatory properties that could have preventive effects for cardiovascular disease, neurodegenerative disorders, cancer, and obesity, have been exemplified by both in vitro and in vivo studies in this review. Furthermore, the importance of bioaccessibility and bioavailability of the phenolic compounds have been summarized. The findings highlight the fact that leaves of some Ericaceae species deserve increased attention and should be studied more profoundly for their biological activities, especially those from spontaneous flora.


Author(s):  
Ewelyn Cintya Felipe dos Santos ◽  
Janaina Carla Barbosa Machado ◽  
Magda Rhayanny Assunção Ferreira ◽  
Luiz Alberto Lira Soares

Background: Acanthospermum hispidum DC is a medicinal plant present in America, Africa, Australia, India, Hawaii, and Brazil. In Brazil, the species is used in the treatment of gastrointestinal, respiratory disorders and has expectorant action. In the literature there are studies on the chemical composition of the species, with reports of the presence of alkaloids, flavonoids, hydrolyzable tannins, terpenes, and steroids. In addition, several studies have reported in vitro and in vivo studies that prove the biological properties of extracts and compounds isolated from different organs of the A. hispidum plant, including: hepatoprotectors, antioxidants, antimicrobials and antiparasitic. Objective: The objective of this review is to update the knowledge about the phytochemical, pharmacological and toxicity aspects of A. hispidum, to contribute to the recognition of the species and direct new studies. Methods: An extensive bibliographic search was conducted in different scientific databases. Results: The presence of different chemical constituents in A. hispidum have been identified, among them flavonoids, tannins, terpenes, and steroids. Additionally, antimicrobial and antiparasitic activities were mainly attributed to the species, and other activities not previously described were presented, such as anticholinesterase, antioxidant, hepatoprotective, and hypoglycemic, all based on results of in vitro and in vivo studies. Finally, no reports of toxic effects were found in the in vitro and in vivo tests. After analyzing the articles, it was evidenced that other experiments, with different models using animals, are essential to evaluate the possible mechanisms of action of the extracts and compounds isolated of A. hispidum. Conclusion: Therefore, this review may contribute to the recognition of the importance of A. hispidum and its potential as a medicinal plant and may also guide the conduct of future research regarding the constituents, biological activities, and toxicity of the species.


2021 ◽  
Vol 27 ◽  
Author(s):  
Taha Monadi ◽  
Mohammad Azadbakht ◽  
Amirhossein Ahmadi ◽  
Aroona Chabra

The Mandragora genus (Solanaceae) is well known for its association with myths and has been used in herbal medicine since ancient times. This extensive literature review synthesizes the information currently available on the ethnobotany, Persian medicine (PM), traditional use, phytochemistry, pharmacology, and toxicity profile of Mandragora spp. The electronic search engines Scopus, Web of Science, PubMed, Google Scholar, and ScienceDirect were searched using keywords such as Mandragora, mandrake, phytochemistry, ethnopharmacology, Persian medicine, ethnobotany, and toxicity. Pertinent information was also extracted from books on PM, ethnomedicine, and dissertations. Mandragora species are found throughout the Mediterranean basin, Europe, Northern Africa, and the Himalayan regions. Traditionally, the species have been used to treat insomnia, dysuria, hemorrhoids, rheumatic pain, toothache, melancholia, and depression, among many others. In vitro studies have confirmed the biological properties of Mandragora spp. crude extracts, such as antioxidant, immunomodulatory, and enzyme-inhibiting effects. Various phytochemicals, such as alkaloids (e.g., atropine and scopolamine), coumarins (e.g., umbelliferone and scopoletin), withanolides (e.g., salpichrolide C), and lipid-like compounds (e.g., beta-sitosterol), have been isolated from Mandragora spp. Some of the pure compounds composing this plant are highlighted for their biologically active effects, including anticholinergic, antidepressant, antioxidant, and anti-inflammatory effects. Modern identifications of biological activities of the compounds isolated from Mandragora, especially alkaloids, support its traditional uses (e.g., for their narcotic effects). More in vivo studies are required to further understanding and most effectively utilize this genus, and extensive toxicological studies are required to validate its safety in clinical use.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document