Health Benefits of Quercetin

2017 ◽  
Vol 2 (2) ◽  
pp. 142 ◽  
Author(s):  
R. Kumar ◽  
S. Vijayalakshmi ◽  
S. Nadanasabapathi

<p>Flavonoids are natural antioxidants derived from plant pigments and commonly found in agricultural produce such as fruits, vegetables, and also in beverages like tea and wine. Quercetin is the most important flavonoid which belongs to the class of flavonol. Quercetin is a vital biologically active compound, which is present in many products, such as onion (<em>Allium cepa</em>), black tea (<em>Camellia sinensis</em>), Broccoli (<em>Brassica oleracea</em> var<em>. italic</em>), and also in red wine and green tea, It is widely used in medicine and pharmaceutics. In particular, it is used for cancer treatment; as it restrains the growth of cancer cells. Earlier some of computational investigations of this molecule were reported in literature, but they were made at low theory level. Quercetin provided many health promoting benefits, like cardiovascular properties, cancer reducing agent, Anti-inflammatory, asthma and many more. That is why the further investigation of this molecule is important. The main important of this review is to understanding of the structure of quercetin and corresponding biological properties of quercetin expressed in vitro studies, absorption is critical, but in vivo studies, better absorbed antioxidant were observed like vitamin C, further reported studies on effect of food processing, health benefits, storage effects, and evaluate its safety and dosage.</p>

2021 ◽  
Vol 27 ◽  
Author(s):  
Taha Monadi ◽  
Mohammad Azadbakht ◽  
Amirhossein Ahmadi ◽  
Aroona Chabra

The Mandragora genus (Solanaceae) is well known for its association with myths and has been used in herbal medicine since ancient times. This extensive literature review synthesizes the information currently available on the ethnobotany, Persian medicine (PM), traditional use, phytochemistry, pharmacology, and toxicity profile of Mandragora spp. The electronic search engines Scopus, Web of Science, PubMed, Google Scholar, and ScienceDirect were searched using keywords such as Mandragora, mandrake, phytochemistry, ethnopharmacology, Persian medicine, ethnobotany, and toxicity. Pertinent information was also extracted from books on PM, ethnomedicine, and dissertations. Mandragora species are found throughout the Mediterranean basin, Europe, Northern Africa, and the Himalayan regions. Traditionally, the species have been used to treat insomnia, dysuria, hemorrhoids, rheumatic pain, toothache, melancholia, and depression, among many others. In vitro studies have confirmed the biological properties of Mandragora spp. crude extracts, such as antioxidant, immunomodulatory, and enzyme-inhibiting effects. Various phytochemicals, such as alkaloids (e.g., atropine and scopolamine), coumarins (e.g., umbelliferone and scopoletin), withanolides (e.g., salpichrolide C), and lipid-like compounds (e.g., beta-sitosterol), have been isolated from Mandragora spp. Some of the pure compounds composing this plant are highlighted for their biologically active effects, including anticholinergic, antidepressant, antioxidant, and anti-inflammatory effects. Modern identifications of biological activities of the compounds isolated from Mandragora, especially alkaloids, support its traditional uses (e.g., for their narcotic effects). More in vivo studies are required to further understanding and most effectively utilize this genus, and extensive toxicological studies are required to validate its safety in clinical use.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Author(s):  
Waill Elkhateeb ◽  
Ghoson Daba

Abstract. Elkhateeb WA, Daba GM. 2020. Review: The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi J Nat Prod Biochem 18: 70-77. As a traditional medicine, Cordyceps has long been used in Asian nations for maintaining vivacity and boosting immunity. Numerous publications on various bioactivities of Cordyceps have been investigated in both in-vitro as well as in vivo studies. Nevertheless, the role of Cordyceps is still arguable whether it acts as food supplement for health benefits or a real healing drug that can be prescribed in medicine. The Cordyceps industry has developed greatly and offers thousands of products, commonly available in a global marketplace. In this review, focus will be on introducing the ecology of Cordyceps and their classification. Moreover, elucidation of the richness of extracts originated from this mushroom in nutritional components was presented, with description of the chemical compounds of Cordyceps and its well-known compounds such as cordycepin, and cordycepic acid. Furthermore, highlights on natural growth and artificial cultivation of famous Cordyceps species were presented. The health benefits and reported bioactivities of Cordyceps species as promising antimicrobial, anticancer, hypocholesterolemic, antioxidant, antiviral, anti-inflammatory, organ protective agent, and enhancer for organ function were presented.


2021 ◽  
Vol 12 (6) ◽  
pp. 7621-7632

Diabetes Mellitus is the most prevalent metabolic disorder that is increasing at an alarming rate worldwide. The unregulated glucose level leads to various types of health disorders, and one of the major diabetic complications is delayed wound healing. Due to the more side effects of synthetic drugs, there is a need to explore plants and their phytochemicals for medicinal purposes. It was found that Quercetin, a flavonoid, increases the rate of diabetic wound healing by enhancing the expression of SIRT1. This demands more insight towards Quercetin and its similar compounds, as it is hypothesized that similar compounds may have similar biological properties. Thus similarity searching was done to identify the most similar compounds of Quercetin, and then the molecular docking of the screened compounds was performed using AutoDock Vina. The unique ligands were docked into the active site of SIRT1 protein (PDB ID: 4ZZJ). The binding free energy of the interacting ligand with the protein was estimated. Six compounds were identified which possess the maximum structural similarity with Quercetin, and upon docking, it was found that gossypetin and herbacetin have similar binding modes and binding energy as that of Quercetin (-7.5 kcal/mol). Therefore, the hypothesis has been validated by in silico analysis. Our study identified two phytochemicals, Gossypetin, and Herbacetin which can prove beneficial for improving diabetic wound healing but needs to be validated further by in vitro and in vivo studies.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Bogdan Kędzia ◽  
Elżbieta Hołderna-Kędzia

The paper presents a review of the publications on the anticancerogenic activity of the biologically active component of propolis – caffeic acid phenethyl ester (CAPE). Literature data indicate numerous biological properties of CAPE, namely: antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic and others. In numerous tests, both in vitro and in vivo, the significant activity of CAPE has been confirmed, including an action against HT-29 human colon adenoma cells, and five: human, murine and other tumor cell cultures. The authors also emphasize that CAPE supports the anticancerogenic effect of drugs, including doxorubicin and cisplatin, due to the reduction of cancer cell survival by 45% and 34%, respectively, compared to the above-mentioned drugs used alone. The conducted research indicates that the induction of apoptosis in cells, i.e. programmed cell death, can be mentioned among the main mechanisms of the anticancerogenic activity of CAPE.


2019 ◽  
Vol 25 (16) ◽  
pp. 1817-1827 ◽  
Author(s):  
Vesna Vučić ◽  
Milkica Grabež ◽  
Armen Trchounian ◽  
Aleksandra Arsić

Background:: Pomegranate (Punica granatum L.) fruits are widely consumed and used as preventive and therapeutic agents since ancient times. Pomegranate is a rich source of a variety of phytochemicals, which are responsible for its strong antioxidative and anti-inflammatory potential. Objective:: The aim of this review is to provide an up-to-date overview of the current knowledge of chemical structure and potential health benefits of pomegranate. Method: : A comprehensive search of available literature. Results:: The review of the literature confirms that juice and extracts obtained from different parts of this plant, including fruit peel, seeds, and leaves exert health benefits in both in vitro and in vivo studies. The antidiabetic, antihypertensive, antimicrobial and anti-tumour effects of pomegranate fruit are of particular scientific and clinical interest. Conclusion:: Further investigations are required to clarify the mechanism of action of the bioactive ingredients and to reveal full potential of pomegranate as both preventive and therapeutic agent.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3224 ◽  
Author(s):  
Beata Kaczmarek

As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 596 ◽  
Author(s):  
María del Carmen Villegas-Aguilar ◽  
Álvaro Fernández-Ochoa ◽  
María de la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Jesús Lozano-Sánchez ◽  
...  

Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.


Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1318-1333 ◽  
Author(s):  
Ligen Lin ◽  
Fayang Zhou ◽  
Shengnan Shen ◽  
Tian Zhang

AbstractLiver fibrosis is a wound-healing response characterized by the accumulation of extracellular matrix following various liver injuries, which results in the deformation of the normal liver architecture and the development of liver cirrhosis and even hepatocellular carcinoma. Numerous in vitro and in vivo studies indicated that oxidative stress mediates the initiation and progression of liver fibrosis. Overaccumulation of reactive oxygen species disrupts macromolecules, induces necrosis and apoptosis of hepatocytes, stimulates the production of pro-fibrogenic mediators, and directly activates hepatic stellate cells, thereby resulting in liver damage and initiating liver fibrosis. Ameliorating oxidative stress is a potential therapeutic strategy for the treatment of liver fibrosis. Natural antioxidants have attracted increasing attention in treating liver fibrosis due to their safety and efficacy. In this review, the pathogenesis of liver fibrosis and the role of oxidative stress in liver fibrosis were discussed. Naturally occurring antioxidants that can treat and prevent liver fibrosis were summarized. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of oxidative stress in liver fibrosis to representative antioxidants for treating liver fibrosis. Naturally occurring antioxidants show a potential for further investigations as lead compounds in fighting liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document