Recent Developments in Mesoporous Silica Nanoparticles for Tumor Theranostic Applications

2021 ◽  
Vol 27 ◽  
Author(s):  
Xuerui Wang ◽  
Mengyuan Zheng ◽  
Faizal Raza ◽  
Yuhao Liu ◽  
Yiqi Wei ◽  
...  

: Due to the advantages of adjustable pore size, easy surface modification, high biocompatibility, and so on, mesoporous silica nanoparticles (MSNs) have attracted lots of attention. And they are widely used in the fields of biology and medicine research, mostly focusing on drug and gene delivery and bioimaging. This review introduces several commonly used synthetic methods of MSNs and the latest progress of MSNs in tumor therapy and diagnosis, mainly including the study about modified MSNs as drug carriers and the application of MSNs in bioimaging. The deficiencies of MSNs’ application and prospects for its future clinical transformation are also discussed.

2021 ◽  
Vol 312 ◽  
pp. 110774
Author(s):  
Rafael Miguel Sábio ◽  
Andréia Bagliotti Meneguin ◽  
Aline Martins dos Santos ◽  
Andreia Sofia Monteiro ◽  
Marlus Chorilli

2020 ◽  
Vol 21 (24) ◽  
pp. 9696
Author(s):  
Miguel Gisbert-Garzarán ◽  
Daniel Lozano ◽  
María Vallet-Regí

Current chemotherapy treatments lack great selectivity towards tumoral cells, which leads to nonspecific drug distribution and subsequent side effects. In this regard, the use of nanoparticles able to encapsulate and release therapeutic agents has attracted growing attention. In this sense, mesoporous silica nanoparticles (MSNs) have been widely employed as drug carriers owing to their exquisite physico-chemical properties. Because MSNs present a surface full of silanol groups, they can be easily functionalized to endow the nanoparticles with many different functionalities, including the introduction of moieties with affinity for the cell membrane or relevant compartments within the cell, thus increasing the efficacy of the treatments. This review manuscript will provide the state-of-the-art on MSNs functionalized for targeting subcellular compartments, focusing on the cytoplasm, the mitochondria, and the nucleus.


Author(s):  
Riyasudheen Nechikkattu ◽  
Jungwon Kong ◽  
Young-Shin Lee ◽  
Hyun-Jung Moon ◽  
Jae-Ho Bae ◽  
...  

Langmuir ◽  
2014 ◽  
Vol 30 (26) ◽  
pp. 7867-7877 ◽  
Author(s):  
Liangliang Dai ◽  
Jinghua Li ◽  
Beilu Zhang ◽  
Junjie Liu ◽  
Zhong Luo ◽  
...  

2015 ◽  
Vol 44 (41) ◽  
pp. 17927-17931 ◽  
Author(s):  
Fabio Carniato ◽  
Mónica Muñoz-Úbeda ◽  
Lorenzo Tei ◽  
Mauro Botta

Organo-modified mesoporous silica nanoparticles, loaded with ibuprofen into the pores and functionalized on the external surface with a stable Gd(iii)–DOTA-monoamide chelate, were prepared and explored as potential theranostic probes.


Author(s):  
Mei-Xia Zhao ◽  
Di-Feng Chen ◽  
Xue-Jie Zhao ◽  
Lin-Song Li ◽  
Yong-Fang Liu

Targeted nanocarrier can selectively deliver anti-tumor drugs to cancer sites improving drug efficiency. Accordingly, a targeted nanocarrier (MSN-FA) was synthesized based on folic acid (FA) modified mesoporous silica nanoparticles (MSNs). These loaded with 10-hydroxycamptothecin (HCPT) to obtain the nano-drug MSN-FA@HCPT. These nanocarriers were characterized by transmission electron microscopy (TEM), zeta potential, ultraviolet-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Notably, the nanocarriers were nearly spherical before and after loading HCPT and exhibited good dispersibility. Also, folate receptor (FR) over-expressing HeLa cells and FR deficient HepG2 cells were used to evaluate in vitro cellular uptake and cytotoxicity of MSN-FA@HCPT and MSN@HCPT. Interestingly, FA-modified nanocarriers enhanced the cytotoxicity of HCPT by improving drug targeting to tumor cells. Also, apoptotic and mitochondrial membrane potential (MMP) reducing effects of MSN-FA@HCPT were more prominent than the MSNs without FA modification. MSN-FA@HCPT can be excellent drug carriers with profound biomedical applications.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 118 ◽  
Author(s):  
Reema Narayan ◽  
Usha Nayak ◽  
Ashok Raichur ◽  
Sanjay Garg

Recent advancements in drug delivery technologies utilizing a variety of carriers have resulted in a path-breaking revolution in the approach towards diagnosis and therapy alike in the current times. Need for materials with high thermal, chemical and mechanical properties have led to the development of mesoporous silica nanoparticles (MSNs). These ordered porous materials have garnered immense attention as drug carriers owing to their distinctive features over the others. They can be synthesized using a relatively simple process, thus making it cost effective. Moreover, by controlling the parameters during the synthesis; the morphology, pore size and volume and particle size can be transformed accordingly. Over the last few years, a rapid increase in research on MSNs as drug carriers for the treatment of various diseases has been observed indicating its potential benefits in drug delivery. Their widespread application for the loading of small molecules as well as macromolecules such as proteins, siRNA and so forth, has made it a versatile carrier. In the recent times, researchers have sorted to several modifications in the framework of MSNs to explore its potential in drug resistant chemotherapy, antimicrobial therapy. In this review, we have discussed the synthesis of these multitalented nanoparticles and the factors influencing the size and morphology of this wonder carrier. The second part of this review emphasizes on the applications and the advances made in the MSNs to broaden the spectrum of its use especially in the field of biomedicine. We have also touched upon the lacunae in the thorough understanding of its interaction with a biological system which poses a major hurdle in the passage of this carrier to the clinical level. In the final part of this review, we have discussed some of the major patents filed in the field of MSNs for therapeutic purpose.


Sign in / Sign up

Export Citation Format

Share Document