Theranostic Applications of Nanomaterials

2022 ◽  
Vol 28 (2) ◽  
pp. 77-77
Author(s):  
Keerti Jain ◽  
Jian Zhong

2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


2020 ◽  
Vol 8 (3) ◽  
pp. 163-190
Author(s):  
Benjamin Steinborn ◽  
Ulrich Lächelt

: Coordinative interactions between multivalent metal ions and drug derivatives with Lewis base functions give rise to nanoscale coordination polymers (NCPs) as delivery systems. As the pharmacologically active agent constitutes a main building block of the nanomaterial, the resulting drug loadings are typically very high. By additionally selecting metal ions with favorable pharmacological or physicochemical properties, the obtained NCPs are predominantly composed of active components which serve individual purposes, such as pharmacotherapy, photosensitization, multimodal imaging, chemodynamic therapy or radiosensitization. By this approach, the assembly of drug molecules into NCPs modulates pharmacokinetics, combines pharmacological drug action with specific characteristics of metal components and provides a strategy to generate tailorable multifunctional nanoparticles. This article reviews different applications and recent examples of such highly functional nanopharmaceuticals with a high ‘material economy’. : Lay Summary: Nanoparticles, that are small enough to circulate in the bloodstream and can carry cargo molecules, such as drugs, imaging or contrast agents, are attractive materials for pharmaceutical applications. A high loading capacity is a generally aspired parameter of nanopharmaceuticals to minimize patient exposure to unnecessary nanomaterial. Pharmaceutical agents containing Lewis base functions in their molecular structure can directly be assembled into metal-organic nanopharmaceuticals by coordinative interaction with metal ions. Such coordination polymers generally feature extraordinarily high loading capacities and the flexibility to encapsulate different agents for a simultaneous delivery in combination therapy or ‘theranostic’ applications.


2021 ◽  
Vol 63 ◽  
pp. 145-151
Author(s):  
Annette Altmann ◽  
Clemens Kratochwil ◽  
Frederik Giesel ◽  
Uwe Haberkorn

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1100
Author(s):  
Sofia Koustoulidou ◽  
Mark W. H. Hoorens ◽  
Simone U. Dalm ◽  
Shweta Mahajan ◽  
Reno Debets ◽  
...  

Cancer Associated Fibroblasts (CAFs) form a major component of the tumour microenvironment, they have a complex origin and execute diverse functions in tumour development and progression. As such, CAFs constitute an attractive target for novel therapeutic interventions that will aid both diagnosis and treatment of various cancers. There are, however, a few limitations in reaching successful translation of CAF targeted interventions from bench to bedside. Several approaches targeting CAFs have been investigated so far and a few CAF-targeting tracers have successfully been developed and applied. This includes tracers targeting Fibroblast Activation Protein (FAP) on CAFs. A number of FAP-targeting tracers have shown great promise in the clinic. In this review, we summarize our current knowledge of the functional heterogeneity and biology of CAFs in cancer. Moreover, we highlight the latest developments towards theranostic applications that will help tumour characterization, radioligand therapy and staging in cancers with a distinct CAF population.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
R. Mikolajczak ◽  
S. Huclier-Markai ◽  
C. Alliot ◽  
F. Haddad ◽  
D. Szikra ◽  
...  

AbstractIn the frame of “precision medicine”, the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


2021 ◽  
Vol 6 (8) ◽  
pp. 2479-2490
Author(s):  
Benilde Adriano ◽  
Nycol M. Cotto ◽  
Neeraj Chauhan ◽  
Meena Jaggi ◽  
Subhash C. Chauhan ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1505
Author(s):  
Kyle N. Hearn ◽  
Trent D. Ashton ◽  
Rameshwor Acharya ◽  
Zikai Feng ◽  
Nuri Gueven ◽  
...  

Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald–Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.


Nanophotonics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 1651-1662 ◽  
Author(s):  
Henan Zhao ◽  
Wen Zhang ◽  
Zhiming Liu ◽  
Deqiu Huang ◽  
Wolun Zhang ◽  
...  

AbstractAs one of the prospective two-dimensional nanomaterials, black phosphorus (BP), which has excellent physical and chemical properties, has witnessed quick development in theranostic applications. The more recent advances in combining BP nanosheet (NS) with nanoparticles exhibit new opportunities to develop multifunctional nanocomposites. However, more effort should be devoted to elucidate the nanomaterial-cell interaction mechanism before the bio-applications of BP-nanoparticle hybrids. Herein, the intracellular behaviors of BP-gold nanoparticles (BP-Au NSs) are first investigated using the surface-enhanced Raman scattering (SERS) technique. The presence of Au nanoparticles on the surface of a BP sheet allows nanohybrids with excellent SERS activity to enhance the intrinsic Raman signals of cellular components located around the NSs. Data from an endocytosis inhibitor blocking assay reveal that the nanohybrids are mainly taken up by macropinocytosis and caveolae-dependent endocytosis, which are energy-dependent processes. Associated with colocalization experiments, nanohybrids are found to internalize into lysosomes and the endoplasmic reticulum. Moreover, the SERS difference spectrum is extracted after Raman-fluorescence colocalization statistical analysis to distinguish the molecular structural differences in the biochemical components of the two organelles. These findings supply a definite cellular mechanistic understanding of the nano-biointeractions of nanocomposites in cancer cells, which may be of great importance to the biomedical applications of nanotechnology in the future.


Sign in / Sign up

Export Citation Format

Share Document