scholarly journals Identification and Quantification of MIDD0301 metabolites

2021 ◽  
Vol 22 ◽  
Author(s):  
M.S. Rashid Roni ◽  
Nicolas M. Zahn ◽  
Brandon N. Mikulsky ◽  
Daniel A. Webb ◽  
Md Yeunus Mian ◽  
...  

Background: MIDD0301 is an oral asthma drug candidate that binds GABAA receptors on airway smooth muscle and immune cells. Objective: The objective of this study is to identify and quantify MIDD0301 metabolites in vitro and in vivo and determine the pharmacokinetics of oral, IP, and IV administrated MIDD0301. Methods: In vitro conversion of MIDD0301 was performed using liver and kidney microsomes/S9 fractions followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A LC-MS/MS method was developed using synthesized standards to quantify MIDD0301 and its metabolites in urine and feces. Blood, lung, and brain were harvested from animals that received MIDD0301 by oral, IP, and IV administration, followed by LCMS/MS quantification. Imaging mass spectrometry was used to demonstrate the presence of MIDD0301 in the lung after oral administration. Results: MIDD0301 is stable in the presence of liver and kidney microsomes and S9 fractions for at least two hours. MIDD0301 undergoes conversion to the corresponding glucuronide and glucoside in the presence of conjugating cofactors. For IP and IV administration, unconjugated MIDD0301 together with significant amounts of MIDD0301 glucoside and MIDD0301 taurine were found in urine and feces. Less conjugation was observed following oral administration, with MIDD0301 glucuronide being the main metabolite. Pharmacokinetic quantification of MIDD0301 in blood, lung, and brain showed very low levels of MIDD0301 in the brain after oral, IV, or IP administration. The drug half-life in these tissues ranged between 4-6 hours for IP and oral and 1-2 hours for IV administration. Imaging mass spectrometry demonstrated that orally administered MIDD0301 distributes uniformly in the lung parenchyma. Conclusion: MIDD0301 undergoes no phase I and moderate phase II metabolism.

2020 ◽  
Vol 21 (24) ◽  
pp. 9693
Author(s):  
Joanna Giebułtowicz ◽  
Natalia Korytowska ◽  
Roman Piotrowski ◽  
Piotr Kułakowski ◽  
Gniewomir Latacz ◽  
...  

Antazoline (ANT) was recently shown to be an effective and safe antiarrhythmic drug in the termination of atrial fibrillation. However, the drug is still not listed in clinical guidelines. No data on ANT metabolism in humans is available. We used liquid chromatography coupled with tandem mass spectrometry to identify and characterize metabolites of ANT. We analyzed plasma of volunteers following a single intravenous administration of 100 mg of ANT mesylate and in in vitro cultures of human hepatocytes. We revealed that ANT was transformed into at least 15 metabolites and we investigated the role of cytochrome P450 isoforms. CYP2D6 was the main one involved in the fast metabolism of ANT. The biotransformation of ANT by CYP2C19 was much slower. The main Phase I metabolite was M1 formed by the removal of phenyl and metabolite M2 with hydroxyl in the para position of phenyl. Glucuronidation was the leading Phase II metabolism. Further study on pharmacokinetics of the metabolites would allow us to better understand the activity profile of ANT and to predict its potential clinical applications. Ultimately, further investigation of the activity profile of the new hydroxylated M2 metabolite of ANT might result in an active substance with a different pharmacological profile than the parent molecule, and potentially a new drug candidate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 462 ◽  
Author(s):  
Elisa Danese ◽  
Davide Negrini ◽  
Mairi Pucci ◽  
Simone De Nitto ◽  
Davide Ambrogi ◽  
...  

Bile acids (BA) play a pivotal role in cholesterol metabolism. Their blood concentration has also been proposed as new prognostic and diagnostic indicator of hepatobiliary, intestinal, and cardiovascular disease. Liquid chromatography tandem mass spectrometry (LC–MS/MS) currently represents the gold standard for analysis of BA profile in biological samples. We report here development and validation of a LC–MS/MS technique for simultaneously quantifying 15 BA species in serum samples. We also established a reference range for adult healthy subjects (n = 130) and performed a preliminary evaluation of in vitro and in vivo interference. The method displayed good linearity, with high regression coefficients (>0.99) over a range of 5 ng/mL (lower limit of quantification, LLOQ) and 5000 ng/mL for all analytes tested. The accuracies were between 85–115%. Both intra- and inter-assay imprecision was <10%. The recoveries ranged between 92–110%. Each of the tested BA species (assessed on three concentrations) were stable for 15 days at room temperature, 4 °C, and −20 °C. The in vitro study did not reveal any interference from triglycerides, bilirubin, or cell-free hemoglobin. The in vivo interference study showed that pools obtained from hyper-cholesterolemic patients and hyper-bilirubinemic patients due to post-hepatic jaundice for benign cholestasis, cholangiocarcinoma and pancreatic head tumors had clearly distinct patterns of BA concentrations compared with a pool obtained from samples of healthy subjects. In conclusion, this study proposes a new suitable candidate method for identification and quantitation of BA in biological samples and provides new insight into a number of variables that should be taken into account when investigating pathophysiological changes of BA in human diseases.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2140 ◽  
Author(s):  
Xinchi Feng ◽  
Yang Li ◽  
Chenxi Guang ◽  
Miao Qiao ◽  
Tong Wang ◽  
...  

Linarin, a flavone glycoside, is considered to be a promising natural product due to its diverse pharmacological activities, including analgesic, antipyretic, anti-inflammatory and hepatoprotective activities. In this research, the metabolites of linarin in rat intestinal flora and biosamples were characterized using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Three ring cleavage metabolites (4-hydroxybenzoic acid, 4-hydroxy benzaldehyde and phloroglucinol) were detected after linarin was incubated with rat intestinal flora. A total of 17 metabolites, including one ring cleavage metabolite (phloroglucinol), were identified in rat biosamples after oral administration of linarin. These results indicate that linarin was able to undergo ring fission metabolism in intestinal flora and that hydrolysis, demethylation, glucuronidation, sulfation, glycosylation, methylation and ring cleavage were the major metabolic pathways. This study provides scientific support for the understanding of the metabolism of linarin and contributes to the further development of linarin as a drug candidate.


2021 ◽  
pp. 114-125
Author(s):  
Mohammed A. Sulaiman ◽  
Mahmoud S. Jada ◽  
Augustine Elizabeth ◽  
Abubakar Umar Modibbo

The in vitro antioxidant activity and in vivo hepatocurative and nephrocurative potential of Newbouldia laevis aqueous leaf extract (NLALE) was evaluated. The study used 30 male, albino rats (Rattus norvegicus) weighing 180 ± 20 g, of which 25 were intoxicated by oral administration of a single dose of diclofenac (100 mg/kg b. wt.). Animals were treated by oral administration of silymarin (200 mg/kg b. wt.), furosemide (1.5 mg/kg b. wt.) and NLALE (200 mg/kg and 400 mg/kg b. wt.) for seven consecutive days before animals were sacrificed on the 8th day and serum/plasma was analyzed for biochemical markers of hepatotoxicity and nephrotoxicity. Phytochemical screening of NLALE revealed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids and tannins. The extract scavenged DPPH radical, reduced Fe3+ and inhibited TBARs in comparable manner to ascorbic acid in vitro. NLALE also attenuated diclofenac-induced liver and kidney intoxication as indicated by the significantly (p<0.05) reduced levels of serum biomarkers of hepatotoxicity: ALT, AST, bilirubin, but increased total protein levels and nephrotoxicity: urea, creatinine, Na+ and K+. The observed effects are dose dependent as the 400 mg/kg b. wt. appeared to be more potent than the 200 mg/kg b. wt. dose. It may be concluded from this study that Newbouldia laevis leaf has ameliorative effect against diclofenac-induced hepatotoxicity and nephrotoxicity probably through antioxidative mechanism and the curative claim and the folkloric use of the plant in the treatment of liver and kidney diseases have been scientifically validated


Sign in / Sign up

Export Citation Format

Share Document