Repositioning of drugs to counter COVID-19 pandemic - An Insight

Author(s):  
Sai M. Akilesh ◽  
Rajesh J ◽  
Dhanabal Palanisamy ◽  
Ashish Wadhwani

: COVID-19 is a coronavirus pandemic, caused by the novel coronavirus 2 (SARS-CoV-2) severe acute respiratory syndrome. The devastating impact of this novel coronavirus outbreak has necessitated the need for rapid and effective anti-viral therapies against SARS-CoV-2, to contain the spread of disease and importantly, alleviate the severe life-threatening symptoms and disorders. Drug repurposing strategy offers an attractive, immediate and realistic approach to tackle this growing pandemic of COVID-19. Due to the similarities with SARS-CoV-1 virus and phylogenetic relation to MERS-CoV virus, accelerated screening of approved drugs and development of repositioning strategies have proved to be critical in the survival of many COVID-19 patients. Numerous scientific investigations from the initial years of coronavirus outbreak along with upcoming advances of immunotherapy and vaccines may prove to be beneficial. Currently, several repurposing strategies are under different phases of clinical trials and provide with definitive framework for the development of future therapies for the effective treatment of COVID-19. This review article summarizes the latest developments and trends in drug repurposing strategy for COVID-19 treatment.

Discoveries ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e121
Author(s):  
Md. Shahadat Hossain ◽  
◽  
Ithmam Hami ◽  
Md. Sad Salabi Sawrav ◽  
Md. Fazley Rabbi ◽  
...  

SARS-CoV-2, the novel coronavirus strain responsible for the current pandemic of COVID-19, has rendered the entire humanity suffering. Several months have passed since the pandemic has struck. However, the world is still looking for an effective treatment plan to battle the viral infection. The first vaccine just received emergency approval in December 2020 for use in USA and UK. These are excellent news, however, the worldwide distribution of such vaccine, the possibility of virus mutation and the lack of data regarding the long-term effects of such vaccines are a significant concern. In addition, although remdesivir was recently approved by the FDA to be used as a clinical drug against COVID-19, it hasn’t stood out yet as a proven form of therapeutics. Such inability to produce a novel therapy has caused enough inconveniences for the affected people worldwide. Repurposing the already available drugs to fight against the virus seems to be a reasonable option amidst such uncertainty. Given the vast collection of potential treatment candidates to be explored against COVID-19, there is a decent chance that a success in this regard will serve the intermediary purpose of clinically treating the infection until a COVID-19 vaccine is widely distributed worldwide and will be able to treat COVID-19 patients that do not adequately respond to vaccines. Such treatments may prove very useful in future coronavirus outbreaks too. Proper research into these repurposing treatments may yield a certain insight into the field of novel treatment production as well. This review study accumulates a relevant set of information about drugs and vaccines against COVID-19, in terms of their repurposing properties and the specific phases of clinical trials they are undergoing across the world. A potential timeline is also suggested to estimate when an effective result can be expected from the ongoing clinical trials for a better anticipation of the drug landscape. This study will hopefully help accelerate investment of resources into development and discovery of drugs and vaccines against the infection.


2020 ◽  
Author(s):  
Jasper Kyle Catapang ◽  
Junie B. Billones

SARS-CoV-2 has no known vaccine nor any effective treatment that has been released for clinical trials yet. This has ultimately paved the way for novel drug discovery approaches since although there are multiple efforts focused on drug repurposing of clinically-approved drugs for SARS-CoV-2, it is also worth considering that these existing drugs can be surpassed in effectivity by novel ones. This research focuses on the generation of novel candidate inhibitors via constrained graph variational autoencoders and the calculation of their Tanimoto similarities against existing drugs---repurposing these existing drugs and considering the novel ligands as possible SARS-CoV-2 main protease inhibitors and ACE2 receptor blockers by docking them through PyRx and ranking these ligands.


2020 ◽  
Author(s):  
Shubhangi Kandwal ◽  
Darren Fayne

Abstract The COVID-19 pandemic has negatively affected human life globally. It has led to economic crises and health emergencies across the world, spreading rapidly among the human population and has caused many deaths. Currently, there are no treatments available for COVID-19 so there is an urgent need to develop therapeutic interventions that could be used against the novel coronavirus infection. In this research, we used computational drug design technologies to repurpose existing drugs as inhibitors of SARS-CoV-2 viral proteins. The Broad Institute’s Drug Repurposing Hub consists of in-development/approved drugs and was computationally screened to identify potential hits which could inhibit protein targets encoded by the SARS-CoV-2 genome. By virtually screening the Broad collection, using rationally designed pharmacophore features, we identified molecules which may be repurposed against viral nucleocapsid and non-structural proteins. The pharmacophore features were generated after careful visualisation of the interactions between co-crystalised ligands and the protein binding site. The ChEMBL database was used to determine the compound’s level of inhibition of SARS-CoV-2 and correlate the predicted viral protein target with whole virus in vitro data. The results from this study may help to accelerate drug development against COVID-19 and the hit compounds should be progressed through further in vitro and in vivo studies on SARS-CoV-2.


2020 ◽  
Author(s):  
Jasper Kyle Catapang ◽  
Junie B. Billones

SARS-CoV-2 has no known vaccine nor any effective treatment that has been released for clinical trials yet. This has ultimately paved the way for novel drug discovery approaches since although there are multiple efforts focused on drug repurposing of clinically-approved drugs for SARS-CoV-2, it is also worth considering that these existing drugs can be surpassed in effectivity by novel ones. This research focuses on the generation of novel candidate inhibitors via constrained graph variational autoencoders and the calculation of their Tanimoto similarities against existing drugs---repurposing these existing drugs and considering the novel ligands as possible SARS-CoV-2 main protease inhibitors and ACE2 receptor blockers by docking them through PyRx and ranking these ligands. Additionally, this research has successfully generated three novel ligands for the SARS-CoV-2 main protease and four novel ligands for the ACE2 receptor.


2020 ◽  
Author(s):  
Jasper Kyle Catapang ◽  
Junie B. Billones

SARS-CoV-2 has no known vaccine nor any effective treatment that has been released for clinical trials yet. This has ultimately paved the way for novel drug discovery approaches since although there are multiple efforts focused on drug repurposing of clinically-approved drugs for SARS-CoV-2, it is also worth considering that these existing drugs can be surpassed in effectivity by novel ones. This research focuses on the generation of novel candidate inhibitors via constrained graph variational autoencoders and the calculation of their Tanimoto similarities against existing drugs---repurposing these existing drugs and considering the novel ligands as possible SARS-CoV-2 main protease inhibitors and ACE2 receptor blockers by docking them through PyRx and ranking these ligands. Additionally, this research has successfully generated three novel ligands for the SARS-CoV-2 main protease and four novel ligands for the ACE2 receptor.


2020 ◽  
Author(s):  
Jasper Kyle Catapang ◽  
Junie B. Billones

SARS-CoV-2 has no known vaccine nor any effective treatment that has been released for clinical trials yet. This has ultimately paved the way for novel drug discovery approaches since although there are multiple efforts focused on drug repurposing of clinically-approved drugs for SARS-CoV-2, it is also worth considering that these existing drugs can be surpassed in effectivity by novel ones. This research focuses on the generation of novel candidate inhibitors via constrained graph variational autoencoders and the calculation of their Tanimoto similarities against existing drugs---repurposing these existing drugs and considering the novel ligands as possible SARS-CoV-2 main protease inhibitors and ACE2 receptor blockers by docking them through PyRx and ranking these ligands.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 977-982
Author(s):  
Mohamed J. Saadh ◽  
Bashar Haj Rashid M ◽  
Roa’a Matar ◽  
Sajeda Riyad Aldibs ◽  
Hala Sbaih ◽  
...  

SARS-COV2 virus causes Coronavirus disease (COVID-19) and represents the causative agent of a potentially fatal disease that is of great global public health concern. The novel coronavirus (2019) was discovered in 2019 in Wuhan, the market of the wet animal, China with viral pneumonia cases and is life-threatening. Today, WHO announces COVID-19 outbreak as a pandemic. COVID-19 is likely to be zoonotic. It is transmitted from bats as intermediary animals to human. Also, the virus is transmitted from human to human who is in close contact with others. The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is nearly supportive; the role of antiviral agents is yet to be established. The SARS-COV2 virus spreads faster than its two ancestors, the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. In this article, we aimed to summarize the transmission, symptoms, pathogenesis, diagnosis, treatment, and vaccine to control the spread of this fatal disease.


Author(s):  
Sisir Nandi ◽  
Mohit Kumar ◽  
Mridula Saxena ◽  
Anil Kumar Saxena

Background: The novel coronavirus disease (COVID-19) is caused by a new strain (SARS-CoV-2) erupted in 2019. Nowadays, it is a great threat that claims uncountable lives worldwide. There is no specific chemotherapeutics developed yet to combat COVID-19. Therefore, scientists have been devoted in the quest of the medicine that can cure COVID- 19. Objective: Existing antivirals such as ASC09/ritonavir, lopinavir/ritonavir with or without umifenovir in combination with antimalarial chloroquine or hydroxychloroquine have been repurposed to fight the current coronavirus epidemic. But exact biochemical mechanisms of these drugs towards COVID-19 have not been discovered to date. Method: In-silico molecular docking can predict the mode of binding to sort out the existing chemotherapeutics having a potential affinity towards inhibition of the COVID-19 target. An attempt has been made in the present work to carry out docking analyses of 34 drugs including antivirals and antimalarials to explain explicitly the mode of interactions of these ligands towards the COVID-19protease target. Results: 13 compounds having good binding affinity have been predicted towards protease binding inhibition of COVID-19. Conclusion: Our in silico docking results have been confirmed by current reports from clinical settings through the citation of suitable experimental in vitro data available in the published literature.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3193
Author(s):  
Christina Pfab ◽  
Luisa Schnobrich ◽  
Samir Eldnasoury ◽  
André Gessner ◽  
Nahed El-Najjar

The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.


2021 ◽  
Vol 13 ◽  
Author(s):  
Sabitha Vadakedath ◽  
Venkataramana Kandi ◽  
Tarun Kumar Suvvari ◽  
L V Simhachalam Kutikuppala ◽  
Vikram Godishala ◽  
...  

: The novel Coronavirus (SARS-CoV-2) that has emerged and spread throughout the world causing CoV disease-19 (COVID-19) has since its discovery affected not only humans and animals but also the environment. Because of the highly infectious nature of the virus, and the respiratory aerosol transmission route, face masks and personal protective equipment have become mandatory for public and healthcare workers, respectively. Also, the complex nature of the pathogenicity of the virus, wherein, it has been associated with mild, moderate, and severe life-threatening infections, has warranted increased laboratory testing and placing the infected people in isolation and under constant observation in quarantine centers or at dedicated hospitals. Some infected people, who are generally healthy, and do not show symptoms have been placed in home quarantines. At this juncture, there has been increased amount of biomedical waste (BMW), and infectious general waste along with plastic disposable recyclable and non-recyclable waste. The increased BMW along with the potentially hazardous plastic waste collection, segregation, transport, and disposal has assumed increased significance during the ongoing pandemic. Therefore, this review attempts to investigate the current scenario of BMW management and strategies to minimize BMW and prevent potential environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document