Advanced Biomaterials for Drug Delivery and Tissue Regeneration

2021 ◽  
Vol 18 (7) ◽  
pp. 834-835
Author(s):  
Jingan Li

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Author(s):  
María Vallet-Regí ◽  
Isabel Izquierdo-Barba ◽  
Montserrat Colilla

This review article describes the importance of structure and functionalization in the performance of mesoporous silica bioceramics for bone tissue regeneration and local drug delivery purposes. Herein, we summarize the pivotal features of mesoporous bioactive glasses, also known as ‘templated glasses’ (TGs), which present chemical compositions similar to those of conventional bioactive sol–gel glasses and the added value of an ordered mesopore arrangement. An in-depth study concerning the possibility of tailoring the structural and textural characteristics of TGs at the nanometric scale and their influence on bioactive behaviour is discussed. The highly ordered mesoporous arrangement of cavities allows these materials to confine drugs to be subsequently released, acting as drug delivery devices. The functionalization of mesoporous silica walls has been revealed as the cornerstone in the performance of these materials as controlled release systems. The synergy between the improved bioactive behaviour and local sustained drug release capability of mesostructured materials makes them suitable to manufacture three-dimensional macroporous scaffolds for bone tissue engineering. Finally, this review tackles the possibility of covalently grafting different osteoinductive agents to the scaffold surface that act as attracting signals for bone cells to promote the bone regeneration process.


ChemInform ◽  
2015 ◽  
Vol 46 (15) ◽  
pp. no-no
Author(s):  
Radhakrishnan Sridhar ◽  
Rajamani Lakshminarayanan ◽  
Kalaipriya Madhaiyan ◽  
Veluchamy Amutha Barathi ◽  
Keith Hsiu Chin Lim ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2881
Author(s):  
Vyacheslav Ogay ◽  
Ellina A. Mun ◽  
Gulshakhar Kudaibergen ◽  
Murat Baidarbekov ◽  
Kuat Kassymbek ◽  
...  

Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Haifeng Liu ◽  
Xili Ding ◽  
Gang Zhou ◽  
Ping Li ◽  
Xing Wei ◽  
...  

Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.


2008 ◽  
Vol 59 (1-6) ◽  
pp. 38-71 ◽  
Author(s):  
F. Barrère ◽  
T.A. Mahmood ◽  
K. de Groot ◽  
C.A. van Blitterswijk

Sign in / Sign up

Export Citation Format

Share Document