scholarly journals Technological Solutions for Older People with Alzheimer’s Disease: Review

2018 ◽  
Vol 15 (10) ◽  
pp. 975-983 ◽  
Author(s):  
Petra Maresova ◽  
Signe Tomsone ◽  
Petre Lameski ◽  
Joana Madureira ◽  
Ana Mendes ◽  
...  

In the nineties, numerous studies began to highlight the problem of the increasing number of people with Alzheimer’s disease in developed countries, especially in the context of demographic progress. At the same time, the 21st century is typical of the development of advanced technologies that penetrate all areas of human life. Digital devices, sensors, and intelligent applications are tools that can help seniors and allow better communication and control of their caregivers. The aim of the paper is to provide an up-to-date summary of the use of technological solutions for improving health and safety for people with Alzheimer’s disease. Firstly, the problems and needs of senior citizens with Alzheimer’s disease (AD) and their caregivers are specified. Secondly, a scoping review is performed regarding the technological solutions suggested to assist this specific group of patients. Works obtained from the following libraries are used in this scoping review: Web of Science, PubMed, Springer, ACM and IEEE Xplore. Four independent reviewers screened the identified records and selected relevant articles which were published in the period from 2007 to 2018. A total of 6,705 publications were selected. In all, 128 full papers were screened. Results obtained from the relevant studies were furthermore divided into the following categories according to the type and use of technologies: devices, processing, and activity recognition. The leading technological solution in the category of devices are wearables and ambient noninvasive sensors. The introduction and utilization of these technologies, however, bring about challenges in acceptability, durability, ease of use, communication, and power requirements. Furthermore, it needs to be pointed out that these technological solutions should be based on open standards.

Author(s):  
Burbaeva G.Sh. ◽  
Androsova L.V. ◽  
Vorobyeva E.A. ◽  
Savushkina O.K.

The aim of the study was to evaluate the rate of polymerization of tubulin into microtubules and determine the level of colchicine binding (colchicine-binding activity of tubulin) in the prefrontal cortex in schizophrenia, vascular dementia (VD) and control. Colchicine-binding activity of tubulin was determined by Sherlinе in tubulin-enriched extracts of proteins from the samples. Measurement of light scattering during the polymerization of the tubulin was carried out using the nephelometric method at a wavelength of 450-550 nm. There was a significant decrease in colchicine-binding activity and the rate of tubulin polymerization in the prefrontal cortex in both diseases, and in VD to a greater extent than in schizophrenia. The obtained results suggest that not only in Alzheimer's disease, but also in other mental diseases such as schizophrenia and VD, there is a decrease in the level of tubulin in the prefrontal cortex of the brain, although to a lesser extent than in Alzheimer's disease, and consequently the amount of microtubules.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Adeline Su Lyn Ng ◽  
Juan Wang ◽  
Kwun Kei Ng ◽  
Joanna Su Xian Chong ◽  
Xing Qian ◽  
...  

Abstract Background Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) cause distinct atrophy and functional disruptions within two major intrinsic brain networks, namely the default network and the salience network, respectively. It remains unclear if inter-network relationships and whole-brain network topology are also altered and underpin cognitive and social–emotional functional deficits. Methods In total, 111 participants (50 AD, 14 bvFTD, and 47 age- and gender-matched healthy controls) underwent resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessments. Functional connectivity was derived among 144 brain regions of interest. Graph theoretical analysis was applied to characterize network integration, segregation, and module distinctiveness (degree centrality, nodal efficiency, within-module degree, and participation coefficient) in AD, bvFTD, and healthy participants. Group differences in graph theoretical measures and empirically derived network community structures, as well as the associations between these indices and cognitive performance and neuropsychiatric symptoms, were subject to general linear models, with age, gender, education, motion, and scanner type controlled. Results Our results suggested that AD had lower integration in the default and control networks, while bvFTD exhibited disrupted integration in the salience network. Interestingly, AD and bvFTD had the highest and lowest degree of integration in the thalamus, respectively. Such divergence in topological aberration was recapitulated in network segregation and module distinctiveness loss, with AD showing poorer modular structure between the default and control networks, and bvFTD having more fragmented modules in the salience network and subcortical regions. Importantly, aberrations in network topology were related to worse attention deficits and greater severity in neuropsychiatric symptoms across syndromes. Conclusions Our findings underscore the reciprocal relationships between the default, control, and salience networks that may account for the cognitive decline and neuropsychiatric symptoms in dementia.


Author(s):  
Hanna Maria Elonheimo ◽  
Helle Raun Andersen ◽  
Andromachi Katsonouri ◽  
Hanna Tolonen

Alzheimer’s disease (AD) is the most common form of dementia, prevalent in approximately 50–70% of the dementia cases. AD affects memory, and it is a progressive disease interfering with cognitive abilities, behaviour and functioning of the person affected. In 2015, there were 47 million people affected by dementia worldwide, and the figure was estimated to increase to 75 million in 2030 and to 132 million by 2050. In the framework of European Human Biomonitoring Initiative (HBM4EU), 18 substances or substance groups were prioritized for investigation. For each of the priority substances, a scoping document was prepared. Based on these scoping documents and complementary review of the recent literature, a scoping review of HBM4EU-priority substances which might be associated with AD was conducted. A possible association between risk of AD and pesticides was detected. For mercury (Hg), association is possible but inconsistent. Regarding cadmium (Cd) and arsenic (As), the results are inconsistent but inclined towards possible associations between the substances and the risk of disease. The evidence regarding lead (Pb) was weaker than for the other substances; however, possible associations exist. Although there is evidence of adverse neurological effects of environmental substances, more research is needed. Environmental chemical exposure and the related hazards are essential concerns for public health, and they could be preventable.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jason H. Y. Yeung ◽  
Thulani H. Palpagama ◽  
Oliver W. G. Wood ◽  
Clinton Turner ◽  
Henry J. Waldvogel ◽  
...  

Alzheimer’s disease (AD) is a neuropathological disorder characterized by the presence and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate dysregulation and the concept of glutamatergic excitotoxicity have been frequently described in the pathogenesis of a variety of neurodegenerative disorders and are postulated to play a major role in the progression of AD. In particular, alterations in homeostatic mechanisms, such as glutamate uptake, have been implicated in AD. An association with excitatory amino acid transporter 2 (EAAT2), the main glutamate uptake transporter, dysfunction has also been described. Several animal and few human studies examined EAAT2 expression in multiple brain regions in AD but studies of the hippocampus, the most severely affected brain region, are scarce. Therefore, this study aims to assess alterations in the expression of EAAT2 qualitatively and quantitatively through DAB immunohistochemistry (IHC) and immunofluorescence within the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus (STG) regions, between human AD and control cases. Although no significant EAAT2 density changes were observed between control and AD cases, there appeared to be increased transporter expression most likely localized to fine astrocytic branches in the neuropil as seen on both DAB IHC and immunofluorescence. Therefore, individual astrocytes are not outlined by EAAT2 staining and are not easily recognizable in the CA1–3 and dentate gyrus regions of AD cases, but the altered expression patterns observed between AD and control hippocampal cases could indicate alterations in glutamate recycling and potentially disturbed glutamatergic homeostasis. In conclusion, no significant EAAT2 density changes were found between control and AD cases, but the observed spatial differences in transporter expression and their functional significance will have to be further explored.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Emily Iannopollo ◽  
Ryan Plunkett ◽  
Kara Garcia

Background and Hypothesis: Magnetic resonance imaging (MRI) has become a useful tool in monitoring the progression of Alzheimer's disease. Previous surface-based analysis has focused on changes in cortical thickness associated with the disease1. The objective of this study is to analyze MRI-derived cortical reconstructions for patterns of atrophy in terms of both cortical thickness and cortical volume. We hypothesize that Alzheimer’s Disease progression will be associated with a more significant change in volume than thickness. Experimental Design or Project Methods: MRI data was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). All subjects with baseline and two-year 3T MRI scans were included. Segmentation of MRIs into gray and white matter was performed with FreeSurfer2,3,4,5. Subjects whose scans did not segment accurately were excluded. Surfaces were then registered to a common atlas with Ciftify6, and anatomically-constrained Multimodal Surface Matching (aMSM) was used to analyze longitudinal changes in each subject7. This produced continuous surface maps showing changes in cortical surface area and thickness. These maps were multiplied to create cortical volume maps8. Permutation Analysis of Linear Models (PALM) was used to perform two-sample t-tests comparing the maps of the Alzheimer’s and control groups9. Results: Preliminary analysis of nine Alzheimer’s subjects and nine control subjects produced surface maps displaying patterns that were expected given previous research findings10,11. There was increased volume and thickness loss in Alzheimer’s subjects relative to controls, with relatively high loss in structures of the medial temporal lobe. Future analysis of a larger sample will determine whether statistically significant differences exist between the Alzheimer’s and control groups in terms of thickness loss and volume loss. Conclusion and Potential Impact: If significant results are found, surface-based analysis of cortical volume may allow for detection of atrophy at an earlier stage in disease progression than would be possible based on cortical thickness.   References 1. Clarkson MJ, Cardoso MJ, Ridgway GR, Modat M, Leung KK, Rohrer JD, Fox NC, Ourselin S. A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage. 2011 Aug 1; 57(3):856-65. 2. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179194. 3. Fischl B, Sereno M, Dale A. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9:195–207.  4. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355. 5. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004;23 Suppl 1:S69-84. 6. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M, WU-Minn HCP Consortium. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013 Oct 15;80:105-24. 7. Robinson EC, Garcia K, Glasser MF, Chen Z, Coalson TS, Makropoulos A, Bozek J, Wright R, Schuh A, Webster M, Hutter J, Price A, Cordero Grande L, Hughes E, Tusor N, Bayly PV, Van Essen DC, Smith SM, Edwards AD, Hajnal J, Jenkinson M, Glocker B, Rueckert D. Multimodal surface matching with higher-order smoothness constraints. Neuroimage. 2018;167:453-65. 8. Marcus DS, Harwell J, Olsen T, Hodge M, Glasser MF, Prior F, Jenkinson M, Laumann T, Curtiss SW, Van Essen DC. Informatics and data mining tools and strategies for the human connectome project. Front Neuroinform 2011;5:4. 9. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage, 2014;92:381-397 10. Matsuda, H. MRI morphometry in Alzheimer’s disease. Ageing Research Reviews. 2016 Sep;30:17-24. 11. Risacher SL, Shen L, West JD, Kim S, McDonald BC, Beckett LA, Harvey DJ, Jack CR Jr, Weiner MW, Saykin AJ. Alzheimer's Disease Neuroimaging Initiative (ADNI). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol Aging. 2010 Aug;31(8):1401-18. 


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 177 ◽  
Author(s):  
Natalia A. Muraleva ◽  
Oyuna S. Kozhevnikova ◽  
Anzhela Z. Fursova ◽  
Nataliya G. Kolosova

Age-related macular degeneration (AMD) is a major cause of irreversible visual impairment and blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. Recent studies strongly indicate that amyloid β (Aβ) accumulation —found in the brain and a defining feature of Alzheimer’s disease—also forms in the retina in both Alzheimer’s disease and AMD. The reason why highly neurotoxic proteins of consistently aggregate in the aging retina, and to what extent they contribute to AMD, remains to be fully addressed. Nonetheless, the hypothesis that Aβ is a therapeutic target in AMD is debated. Here, we showed that long-term treatment with SkQ1 (250 nmol/[kg body weight] daily from the age of 1.5 to 22 months) suppressed the development of AMD-like pathology in senescence-accelerated OXYS rats by reducing the level of Aβ and suppressing the activity of mTOR in the retina. Inhibition of mTOR signaling activity, which plays key roles in aging and age-related diseases, can be considered a new mechanism of the prophylactic effect of SkQ1. It seems probable that dietary supplementation with mitochondria-targeted antioxidant SkQ1 can be a good prevention strategy to maintain eye health and possibly a treatment of AMD.


2019 ◽  
Vol 29 (4) ◽  
pp. 119-122
Author(s):  
Matt Kaeberlein

Abstract Alzheimer’s disease is a growing threat to the economic and social well-being of developed countries around the globe, but efforts to delay, prevent, or cure this disorder have yet to yield success. I believe the lack of progress largely results from approaches that ignore the most important component of Alzheimer’s disease: biological aging. Major advances have been made in understanding the molecular mechanisms that link biological aging to disease. These mechanisms have been formalized as nine hallmarks, or pillars, of aging. Here, I discuss the barriers that have impaired progress and propose specific steps that can be taken to overcome these barriers. The time has come to adopt bold new strategies that tackle biological aging as the root cause of Alzheimer’s disease.


2011 ◽  
Vol 31 (6) ◽  
pp. 413-416 ◽  
Author(s):  
Christoph Laske ◽  
Andreas J. Fallgatter ◽  
Elke Stransky ◽  
Katja Hagen ◽  
Daniela Berg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document