Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer’s Disease

2019 ◽  
Vol 16 (2) ◽  
pp. 172-181
Author(s):  
Christian Humpel

Transgenic mice have been extensively used to study the Alzheimer pathology. In order to reduce, refine and replace (3Rs) the number of animals, ex vivo cultures are used and optimized. Organotypic brain slices are the most potent ex vivo slice culture models, keeping the 3-dimensional structure of the brain and being closest to the in vivo situation. Organotypic brain slice cultures have been used for many decades but were mainly prepared from postnatal (day 8-10) old rats or mice. More recent work (including our lab) now aims to culture organotypic brain slices from adult mice including transgenic mice. Especially in Alzheimer´s disease research, brain slices from adult transgenic mice will be useful to study beta-amyloid plaques, tau pathology and glial activation. This review will summarize the studies using organotypic brain slice cultures from adult mice to mimic Alzheimer's disease and will highlight advantages and also pitfalls using this technique.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 592
Author(s):  
Cara L. Croft ◽  
Wendy Noble

Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. There are no cures for AD and current medications only alleviate some disease symptoms. Transgenic rodent models to study Alzheimer’s mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. In vivo studies are also resource, labour, time and cost intensive. We have developed a novel organotypic brain slice culture model to study Alzheimer’ disease which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. We obtain 36 brain slices from each mouse pup, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer’s disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 592 ◽  
Author(s):  
Cara L. Croft ◽  
Wendy Noble

Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. Transgenic rodent models to study Alzheimer’s mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. We have developed a novel organotypic brain slice culture model to study Alzheimer’s disease using 3xTg-AD mice which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. Using a McIllwain tissue chopper, we obtain 36 x 350 micron slices from each P8-P9 mouse pup for culture between 2 weeks and 6 months on semi-permeable 0.4 micron pore membranes, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer’s disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis.


2019 ◽  
Vol 16 (8) ◽  
pp. 723-731 ◽  
Author(s):  
Alexander Sturzu ◽  
Sumbla Sheikh ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Christopher Weidenmaier ◽  
...  

Background: Curcumin has been of interest in the field of Alzheimer’s disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. Methods: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like β-amyloid plaques. Results: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to β- amyloid plaques. Conclusion: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rafael Rivas-Santisteban ◽  
Alejandro Lillo ◽  
Jaume Lillo ◽  
Joan-Biel Rebassa ◽  
Joan S. Contestí ◽  
...  

Abstract Background The cannabinoid CB2 receptor (CB2R), which is a target to afford neuroprotection, and N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, which are key in mediating excitatory neurotransmission, are expressed in both neurons and glia. As NMDA receptors are the target of current medication in Alzheimer’s disease patients and with the aim of finding neuromodulators of their actions that could provide benefits in dementia, we hypothesized that cannabinoids could modulate NMDA function. Methods Immunocytochemistry was used to analyze the colocalization between CB2 and NMDA receptors; bioluminescence resonance energy transfer was used to detect CB2-NMDA receptor complexes. Calcium and cAMP determination, mitogen-activated protein kinase (MAPK) pathway activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify CB2-NMDA heteromer expression in mouse primary cultures and in the brain of APPSw/Ind transgenic mice, an Alzheimer’s disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). Results In a heterologous system, we identified CB2-NMDA complexes with a particular heteromer print consisting of impairment by cannabinoids of NMDA receptor function. The print was detected in activated primary microglia treated with lipopolysaccharide and interferon-γ. CB2R activation blunted NMDA receptor-mediated signaling in primary hippocampal neurons from APPSw/Ind mice. Furthermore, imaging studies showed that in brain slices and in primary cells (microglia or neurons) from APPSw/Ind mice, there was a marked overexpression of macromolecular CB2-NMDA receptor complexes thus becoming a tool to modulate excessive glutamate input by cannabinoids. Conclusions The results indicate a negative cross-talk in CB2-NMDA complexes signaling. The expression of the CB2-NMDA receptor heteromers increases in both microglia and neurons from the APPSw/Ind transgenic mice, compared with levels in samples from age-matched control mice.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
C. L. Croft ◽  
H. S. Futch ◽  
B. D. Moore ◽  
T. E. Golde

AbstractOrganotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer’s disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.


Author(s):  
Gennadiy Fonar ◽  
Baruh Polis ◽  
Dev Sharan Sams ◽  
Almog Levi ◽  
Assaf Malka ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common cause of senile dementia and one of the greatest medical, social, and economic challenges. According to a dominant theory, amyloid-β (Aβ) peptide is a key AD pathogenic factor. Aβ-soluble species interfere with synaptic functions, aggregate gradually, form plaques, and trigger neurodegeneration. The AD-associated pathology affects numerous systems, though the substantial loss of cholinergic neurons and α7 nicotinic receptors (α7AChR) is critical for the gradual cognitive decline. Aβ binds to α7AChR under various experimental settings; nevertheless, the functional significance of this interaction is ambiguous. Whereas the capability of low Aβ concentrations to activate α7AChR is functionally beneficial, extensive brain exposure to high Aβ concentrations diminishes α7AChR activity, contributes to the cholinergic deficits that characterize AD. Aβ and snake α-neurotoxins competitively bind to α7AChR. Accordingly, we designed a chemically modified α-cobratoxin (mToxin) to inhibit the interaction between Aβ and α7AChR. Subsequently, we examined mToxin in a set of original in silico, in vitro, ex vivo experiments, and in a murine AD model. We report that mToxin reversibly inhibits α7AChR, though it attenuates Aβ-induced synaptic transmission abnormalities, and upregulates pathways supporting long-term potentiation and reducing apoptosis. Remarkably, mToxin demonstrates no toxicity in brain slices and mice. Moreover, its chronic intracerebroventricular administration improves memory in AD-model animals. Our results point to unique mToxin neuroprotective properties, which might be tailored for the treatment of AD. Our methodology bridges the gaps in understanding Aβ-α7AChR interaction and represents a promising direction for further investigations and clinical development.


Author(s):  
Silvio R. Meier ◽  
Dag Sehlin ◽  
Greta Hultqvist ◽  
Stina Syvänen

Abstract Purpose The triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by brain microglia. Microglial activation, as observed in Alzheimer’s disease (AD) as well as in transgenic mice expressing human amyloid-beta, appears to increase soluble TREM2 (sTREM2) levels in CSF and brain. In this study, we used two different transgenic mouse models of AD pathology and investigated the potential of TREM2 to serve as an in vivo biomarker for microglial activation in AD. Procedures We designed and generated a bispecific antibody based on the TREM2-specific monoclonal antibody mAb1729, fused to a single-chain variable fragment of the transferrin receptor binding antibody 8D3. The 8D3-moiety enabled transcytosis of the whole bispecific antibody across the blood-brain barrier. The bispecific antibody was radiolabeled with I-125 (ex vivo) or I-124 (PET) and administered to transgenic AD and wild-type (WT) control mice. Radioligand retention in the brain of transgenic animals was compared to WT mice by isolation of brain tissue at 24 h or 72 h, or with in vivo PET at 24 h, 48 h, and 72 h. Intrabrain distribution of radiolabeled mAb1729-scFv8D3CL was further studied by autoradiography, while ELISA was used to determine TREM2 brain concentrations. Results Transgenic animals displayed higher total exposure, calculated as the AUC based on SUV determined at 24h, 48h, and 72h post injection, of PET radioligand [124I]mAb1729-scFv8D3CL than WT mice. However, differences were not evident in single time point PET images or SUVs. Ex vivo autoradiography confirmed higher radioligand concentrations in cortex and thalamus in transgenic mice compared to WT, and TREM2 levels in brain homogenates were considerably higher in transgenic mice compared to WT. Conclusion Antibody-based radioligands, engineered to enter the brain, may serve as PET radioligands to follow changes of TREM2 in vivo, but antibody formats with faster systemic clearance to increase the specific signal in relation to that from blood in combination with antibodies showing higher affinity for TREM2 must be developed to further progress this technique for in vivo use.


2020 ◽  
Vol 238 (11) ◽  
pp. 2521-2529
Author(s):  
Buket Ucar ◽  
Sedef Yusufogullari ◽  
Christian Humpel

Abstract Vessel damage is a general pathological process in many neurodegenerative disorders, as well as spinal cord injury, stroke, or trauma. Biomaterials can present novel tools to repair and regenerate damaged vessels. The aim of the present study is to test collagen hydrogels loaded with different angiogenic factors to study vessel repair in organotypic brain slice cultures. In the experimental set up I, we made a cut on the organotypic brain slice and tested re-growth of laminin + vessels. In the experimental set up II, we cultured two half brain slices with a gap with a collagen hydrogel placed in between to study endothelial cell migration. In the experimental set up I, we showed that the number of vessels crossing the cut was tendencially increased with the addition of fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor, or platelet-derived growth factor-BB compared to the control group. In the experimental set up II, we demonstrated that a collagen hydrogel loaded with FGF-2 resulted in a significantly increased number of migrated laminin + cells in the gap between the slices compared to the control hydrogel. Co-administration of several growth factors did not further potentiate the effects. Taken together, we show that organotypic brain slices are good models to study brain vessels and FGF-2 is a potent angiogenic factor for endothelial cell proliferation and migration. Our results provide evidence that the collagen hydrogels can be used as an extracellular matrix for the vascular endothelial cells.


2003 ◽  
Vol 353 (1) ◽  
pp. 66-68 ◽  
Author(s):  
Amita Quadros ◽  
Nikunj Patel ◽  
Robert Crescentini ◽  
Fiona Crawford ◽  
Daniel Paris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document