Myricanol-9-acetate, a novel naturally occurring derivative of myricanol, induces ROS-dependent mitochondrial-mediated Apoptosis in MCF-7 cancer cells

Author(s):  
Gazanfar Ahmad ◽  
Sameer Ahmad Mir ◽  
Loveleena Kour Anand ◽  
Faheem Hyder Pottoo ◽  
Neerupma Dhiman ◽  
...  

Background: Low therapeutic efficacy and drug-induced systemic toxicity of currently used anti-cancerous chemotherapeutic agents are major compelling factors for finding out clinically efficient molecules with high efficiency and less toxicity. Objective: The current research work was undertaken to evaluate the anticancer potential of Myricanol-9-acetate (MA), a novel naturally occurring derivative of myricanol. Methods: MCF-7, MiaPaCa-2, and HCT 116 were used for cytotoxicity determination of the MA and ML (Myricanol) by MTT assay. The mechanistic study involved the determination of cell cycle arrest, ΔΨm loss, ROS generation, western blot assay, and flow cytometry by reported methods on MCF-7 cells. Results: MA exhibited anticancer activity against all three cell lines; however, the molecule was found most active against the MCF-7 cell line. We observed IC50 20μM with MA treatment as compared to the IC50 of 42 μM for myricanol treatment. Detailed mechanistic studies revealed that MA induced apoptosis on MCF-7 cell line through ROS generation; a dose-dependent drop in mitochondrial membrane potential was found to be associated with cell cycle arrest at G0/G1 phase. Our results further demonstrated down-regulation of Bcl2 and activation of the caspase cascade as the events involved in the MA-induced apoptosis. Flow cytometry results indicated an increase in early and late apoptotic population in a dose-dependent manner with an apoptotic population of about 20% at 30 μM of MA, thus supporting our results. Conclusion: Present findings thus suggest that MA might serve as a promising novel drug candidate having high scope for further evaluation in preclinical and clinical studies.

2020 ◽  
Vol 49 (23) ◽  
pp. 7842-7851
Author(s):  
Ceyda Icsel ◽  
Veysel T. Yilmaz ◽  
Seyma Aydinlik ◽  
Muhittin Aygun

Highly cytotoxic Zn(ii) and Hg(ii) saccharinate complexes with 2,6-bis(2-benzimidazolyl)pyridine cause G0/G1 cell cycle arrest, excessive ROS generation, and mitochondrial and DNA damage in A549 and MCF-7 cell lines, respectively.


2015 ◽  
Vol 10 (2) ◽  
pp. 409 ◽  
Author(s):  
Jing Lv ◽  
Ming-Qin Cao ◽  
Jian-Chun Yu

<p>The aim of the current study was to evaluate the anticancer and apoptotic effects of alantolactone pyrazoline analogue in human non-small cell lung cancer (NCI-H460) cells. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide) assay was used to evaluate the cell viability while as fluorescence microscopy was used to assess the effect on apoptosis, cellular and nuclear morphology. Flow cytometry evaluated the effect of APA on cell cycle arrest in these cells. The results revealed that APA induced potent, time and dose-dependent cytotoxic effects on the growth of NCI-H460 cells. It also inhibited colony forming tendency as well as cell invasion capability of these cancer cells. APA induced dose-dependent nuclear and cellular morphological effects including chromatin condensation and DNA fragmentation. Flow cytometry revealed that the anticancer effects of APA might be due to its cell cycle arrest inducing tendency in G0/G1 phase of the cell cycle.</p>


2021 ◽  
Vol 14 (01) ◽  
pp. 16-18
Author(s):  
Aminah Dalimunthe ◽  
Poppy Anjelisa Zaitun Hasibuan ◽  
Muflihah Fujiko ◽  
Masfria ◽  
Denny Satria

Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 195 ◽  
Author(s):  
Zhihua Sun ◽  
Jiaolin Bao ◽  
Manqi Zhangsun ◽  
Shuai Dong ◽  
Dongting Zhangsun ◽  
...  

The α9-containing nicotinic acetylcholine receptor (nAChR) is increasingly emerging as a new tumor target owing to its high expression specificity in breast cancer. αO-Conotoxin GeXIVA is a potent antagonist of α9α10 nAChR. Nevertheless, the anti-tumor effect of GeXIVA on breast cancer cells remains unclear. Cell Counting Kit-8 assay was used to study the cell viability of breast cancer MDA-MD-157 cells and human normal breast epithelial cells, which were exposed to different doses of GeXIVA. Flow cytometry was adopted to detect the cell cycle arrest and apoptosis of GeXIVA in breast cancer cells. Migration ability was analyzed by wound healing assay. Western blot (WB), quantitative real-time PCR (QRT-PCR) and flow cytometry were used to determine expression of α9-nAChR. Stable MDA-MB-157 breast cancer cell line, with the α9-nAChR subunit knocked out (KO), was established using the CRISPR/Cas9 technique. GeXIVA was able to significantly inhibit the proliferation and promote apoptosis of breast cancer MDA-MB-157 cells. Furthermore, the proliferation of breast cancer MDA-MB-157 cells was inhibited by GeXIVA, which caused cell cycle arrest through downregulating α9-nAChR. GeXIVA could suppress MDA-MB-157 cell migration as well. This demonstrates that GeXIVA induced a downregulation of α9-nAChR expression, and the growth of MDA-MB-157 α9-nAChR KO cell line was inhibited as well, due to α9-nAChR deletion. GeXIVA inhibits the growth of breast cancer cell MDA-MB-157 cells in vitro and may occur in a mechanism abolishing α9-nAChR.


Pharmacology ◽  
2019 ◽  
Vol 105 (3-4) ◽  
pp. 164-172
Author(s):  
Shuangbo Fan ◽  
Qian Xu ◽  
Liang Wang ◽  
Yulin Wan ◽  
Sheng Qiu

SMBA1 (small-molecule Bax agonists 1), a small molecular activator of Bax, is a potential anti-tumour agent. In the present study, we investigated the biological effects of SMBA1 on glioblastoma (GBM) cells. SMBA1 reduced the viabilities of U87MG, U251 and T98G cells in a time- and dose-dependent manner. Moreover, treatment with SMBA1 induced cell cycle arrest at the G2/M phase transition, accompanied by the downregulation of Cdc25c and cyclin B1 and the upregulation of p21. SMBA1 also induced apoptosis of GBM cells in a dose-dependent manner. Mechanistically, SMBA1 induced apoptosis via the intrinsic pathway. Silencing of Bax or ectopic expression of Bcl-2 significantly inhibited SMBA1-induced apoptosis. Moreover, SMBA1 inhibited the growth of U87MG xenograft tumours in vivo. Overall, SMBA1 shows anti-proliferative effects against GBM cells through activation of the intrinsic apoptosis pathway.


2017 ◽  
Vol 4 ◽  
pp. 420-426 ◽  
Author(s):  
Davoud Hasanzadeh ◽  
Majid Mahdavi ◽  
Gholamreza Dehghan ◽  
Hojjatollah Nozad Charoudeh

2014 ◽  
Vol 89 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Victor Romanov ◽  
Terry C. Whyard ◽  
Wayne C. Waltzer ◽  
Arthur P. Grollman ◽  
Thomas Rosenquist

Sign in / Sign up

Export Citation Format

Share Document