The antiproliferative activity of ferrocene derivatives against drug-resistant cancer cell lines: A mini review

Author(s):  
Li Li ◽  
Lin Ma ◽  
Jian Sun

: Cancer, a highly heterogeneous disease at intra/inter patient levels, remains a serious health problem contributing to significant morbidity and mortality worldwide. Despite great progress in clinical treatment, the concerns impeding the success of conventional cancer chemotherapy is descending efficacy of anticancer agents due to the development of drug resistance especially multiple drug resistance (MDR). Ferrocene derivatives have a different mode of action to the platinum anticancer drugs, and the ferrocene-phenol hybrid ferrocifen exhibits potential activity against drug-resistant cancers. Currently, ferrocifen is in preclinical trial, demonstrating that ferrocene derivatives are useful scaffolds for the development of novel anticancer candidates which are active against drug-resistant cancers. In the present review, the current scenario of ferrocene derivatives including ferrocene metal complexes, hybrids and other derivatives with antiproliferative potential against drug-resistant cancer cell lines is summarized for further rational design.

1993 ◽  
Vol 150 (5 Part 1) ◽  
pp. 1544-1547 ◽  
Author(s):  
Gerhard Theyer ◽  
Marion Schirmböck ◽  
Therese Thalhammer ◽  
Edward R. Sherwood ◽  
Gerhard Baumgartner ◽  
...  

2021 ◽  
Vol 14 (12) ◽  
pp. 1292
Author(s):  
Anunay J. Pulukuri ◽  
Anthony J. Burt ◽  
Larissa K. Opp ◽  
Colin M. McDowell ◽  
Maryam Davaritouchaee ◽  
...  

Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Radosław Januchowski ◽  
Karolina Wojtowicz ◽  
Patrycja Sujka-Kordowska ◽  
Małgorzata Andrzejewska ◽  
Maciej Zabel

Ovarian cancer is the leading cause of death among gynaecological malignancies. Multiple drug resistance makes cancer cells insensitive to chemotherapy. In this study, we developed six primary ovarian cancer cell lines (W1MR, W1CR, W1DR, W1VR, W1TR, and W1PR) resistant to drugs such as methotrexate, cisplatin, doxorubicin, vincristine, topotecan, and paclitaxel. A chemosensitivity assay MTT test was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and Western blot were also performed to determine mRNA and protein expression of genes involved in chemoresistance. We observed high cross-resistance to doxorubicin, vincristine, and paclitaxel in the cell lines resistant to these agents. We also found a significant correlation between resistance to these drugs and increased expression of P-gp. Two different mechanisms of topotecan resistance were observed in the W1TR and W1PR cell lines. We did not observe any correlation between MRP2 transcript and protein levels. Cell lines resistant to agents used in ovarian cancer treatment remained sensitive to methotrexate. The main mechanisms of drug resistance were due to P-gp expression in the doxorubicin, vincristine, and paclitaxel resistant cell lines and BCRP expression in the topotecan resistant cell line.


1993 ◽  
Vol 150 (2 Part 1) ◽  
pp. 505-509 ◽  
Author(s):  
Nobuo Shinohara ◽  
Monica Liebert ◽  
Gary Wedemeyer ◽  
John H.C. Chang ◽  
H. Barton Grossman

Oncotarget ◽  
2017 ◽  
Vol 8 (30) ◽  
pp. 49944-49958 ◽  
Author(s):  
Radosław Januchowski ◽  
Karolina Sterzyńska ◽  
Piotr Zawierucha ◽  
Marcin Ruciński ◽  
Monika Świerczewska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document