Insulin Therapy in Pregnancy Hypertensive Diseases and its Effect on the Offspring and Mother Later in Life

2019 ◽  
Vol 17 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Alfonso Mate ◽  
Antonio J. Blanca ◽  
Rocío Salsoso ◽  
Fernando Toledo ◽  
Pablo Stiefel ◽  
...  

Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1612-P
Author(s):  
NADIRA SULTANA KAKOLY ◽  
ARUL EARNEST ◽  
HELENA TEEDE ◽  
LISA MORAN ◽  
DEBORAH LOXTON ◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 403-412 ◽  
Author(s):  
Krzysztof C Lewandowski ◽  
Justyna Płusajska ◽  
Wojciech Horzelski ◽  
Ewa Bieniek ◽  
Andrzej Lewiński

Background Though insulin resistance (IR) is common in polycystic ovary syndrome (PCOS), there is no agreement as to what surrogate method of assessment of IR is most reliable. Subjects and methods In 478 women with PCOS, we compared methods based on fasting insulin and either fasting glucose (HOMA-IR and QUICKI) or triglycerides (McAuley Index) with IR indices derived from glucose and insulin during OGTT (Belfiore, Matsuda and Stumvoll indices). Results There was a strong correlation between IR indices derived from fasting values HOMA-IR/QUICKI, r = −0.999, HOMA-IR/McAuley index, r = −0.849 and between all OGTT-derived IR indices (e.g. r = −0.876, for IRI/Matsuda, r = −0.808, for IRI/Stumvoll, and r = 0.947, for Matsuda/Stumvoll index, P < 0.001 for all), contrasting with a significant (P < 0.001), but highly variable correlation between IR indices derived from fasting vs OGTT-derived variables, ranging from r = −0.881 (HOMA-IR/Matsuda), through r = 0.58, or r = −0.58 (IRI/HOMA-IR, IRI/QUICKI, respectively) to r = 0.41 (QUICKI/Stumvoll), and r = 0.386 for QUICKI/Matsuda indices. Detailed comparison between HOMA-IR and IRI revealed that concordance between HOMA and IRI was poor for HOMA-IR/IRI values above 75th and 90th percentile. For instance, only 53% (70/132) women with HOMA-IR >75th percentile had IRI value also above 75th percentile. There was a significant, but weak correlation of all IR indices with testosterone concentrations. Conclusions Significant number of women with PCOS can be classified as being either insulin sensitive or insulin resistant depending on the method applied, as correlation between various IR indices is highly variable. Clinical application of surrogate indices for assessment of IR in PCOS must be therefore viewed with an extreme caution.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Eduardo Spinedi ◽  
Daniel P. Cardinali

Polycystic ovary syndrome is a highly frequent reproductive-endocrine disorder affecting up to 8–10% of women worldwide at reproductive age. Although its etiology is not fully understood, evidence suggests that insulin resistance, with or without compensatory hyperinsulinemia, and hyperandrogenism are very common features of the polycystic ovary syndrome phenotype. Dysfunctional white adipose tissue has been identified as a major contributing factor for insulin resistance in polycystic ovary syndrome. Environmental (e.g., chronodisruption) and genetic/epigenetic factors may also play relevant roles in syndrome development. Overweight and/or obesity are very common in women with polycystic ovary syndrome, thus suggesting that some polycystic ovary syndrome and metabolic syndrome female phenotypes share common characteristics. Sleep disturbances have been reported to double in women with PCOS and obstructive sleep apnea is a common feature in polycystic ovary syndrome patients. Maturation of the luteinizing hormone-releasing hormone secretion pattern in girls in puberty is closely related to changes in the sleep-wake cycle and could have relevance in the pathogenesis of polycystic ovary syndrome. This review article focuses on two main issues in the polycystic ovary syndrome-metabolic syndrome phenotype development: (a) the impact of androgen excess on white adipose tissue function and (b) the possible efficacy of adjuvant melatonin therapy to improve the chronobiologic profile in polycystic ovary syndrome-metabolic syndrome individuals. Genetic variants in melatonin receptor have been linked to increased risk of developing polycystic ovary syndrome, to impairments in insulin secretion, and to increased fasting glucose levels. Melatonin therapy may protect against several metabolic syndrome comorbidities in polycystic ovary syndrome and could be applied from the initial phases of patients’ treatment.


2012 ◽  
Vol 58 (6) ◽  
pp. 999-1009 ◽  
Author(s):  
Héctor F Escobar-Morreale ◽  
Sara Samino ◽  
María Insenser ◽  
María Vinaixa ◽  
Manuel Luque-Ramírez ◽  
...  

Abstract BACKGROUND Abdominal adiposity and obesity influence the association of polycystic ovary syndrome (PCOS) with insulin resistance and diabetes. We aimed to characterize the intermediate metabolism phenotypes associated with PCOS and obesity. METHODS We applied a nontargeted GC-MS metabolomic approach to plasma samples from 36 patients with PCOS and 39 control women without androgen excess, matched for age, body mass index, and frequency of obesity. RESULTS Patients with PCOS were hyperinsulinemic and insulin resistant compared with the controls. The increase in plasma long-chain fatty acids, such as linoleic and oleic acid, and glycerol in the obese patients with PCOS suggests increased lipolysis, possibly secondary to impaired insulin action at adipose tissue. Conversely, nonobese patients with PCOS showed a metabolic profile consisting of suppression of lipolysis and increased glucose utilization (increased lactic acid concentrations) in peripheral tissues, and PCOS patients as a whole showed decreased 2-ketoisocaproic and alanine concentrations, suggesting utilization of branched-chain amino acids for protein synthesis and not for gluconeogenesis. These metabolic processes required effective insulin signaling; therefore, insulin resistance was not universal in all tissues of these women, and different mechanisms possibly contributed to their hyperinsulinemia. PCOS was also associated with decreased α-tocopherol and cholesterol concentrations irrespective of obesity. CONCLUSIONS Substantial metabolic heterogeneity, strongly influenced by obesity, underlies PCOS. The possibility that hyperinsulinemia may occur in the absence of universal insulin resistance in nonobese women with PCOS should be considered when designing diagnostic and therapeutic strategies for the management of this prevalent disorder.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Alexandre Connolly ◽  
Samuel Leblanc ◽  
Jean-Patrice Baillargeon

Polycystic ovary syndrome (PCOS) is a common and significant condition associated with hyperandrogenism, infertility, low quality of life, and metabolic comorbidities. One possible explanation of PCOS development is cellular dysfunction induced by nonesterified fatty acids (NEFAs), that is, lipotoxicity, which could explain both the hyperandrogenemia and insulin resistance that characterize women with PCOS. The literature suggests that androgen biosynthesis may be induced by overexposure of androgen-secreting tissues to NEFA and/or defective NEFA metabolism, leading to lipotoxic effects. Indeed, lipotoxicity could trigger androgenic hyperresponsiveness to insulin, LH, and ACTH. In most PCOS women, lipotoxicity also causes insulin resistance, inducing compensatory hyperinsulinemia, and may thus further increase hyperandrogenemia. Many approaches aimed at insulin sensitization also reduce lipotoxicity and have been shown to treat PCOS hyperandrogenemia. Furthermore, our group and others found that angiotensin II type 2 receptor (AT2R) activation is able to improve lipotoxicity. We provided evidence, using C21/M24, that AT2R activation improves adipocytes’ size and insulin sensitivity in an insulin-resistant rat model, as well as androgen levels in a PCOS obese rat model. Taken together, these findings point toward the important role of lipotoxicity in PCOS development and of the RAS system as a new target for the treatment of PCOS.


2019 ◽  
Vol 51 (05) ◽  
pp. 279-287 ◽  
Author(s):  
Fatemeh Hajizadeh-Sharafabad ◽  
Jalal Moludi ◽  
Helda Tutunchi ◽  
Ehsaneh Taheri ◽  
Azimeh Izadi ◽  
...  

AbstractPolycystic ovary syndrome (PCOS), as the most common endocrine disorder in reproductive-aged women, is recognized by hyperandrogenism and insulin resistance. Selenium (Se) potentially possesses therapeutic effects on PCOS due to antioxidant and insulin-like properties. This systematic review evaluates the potential role of Se in the complications of PCOS. A systematic review was performed on published studies reporting the effects of Se on PCOS. Three major databases including PubMed, Scopus, and Google Scholar were searched until December 2018. A total of 7 human studies and two in vitro studies met the inclusion criteria. Two out of three case-control studies showed that serum Se levels tend to decrease in patients with PCOS. Of four studies that evaluated the impact of Se supplementation on insulin resistance, only one study showed protective effects of Se against insulin resistance. Two out of three studies reported the antioxidant effect of Se. Few studies investigating anti-androgenic effect of Se presented controversial results. There were three studies that evaluated the anti-hyperlipidemic effect of Se, of which two surveys indicated the lowering effects of Se on VLDL and LDL-cholesterol. The reviewed studies confirmed inverse relationships between serum Se levels and some androgenic hormones in PCOS. Se is able to attenuate insulin resistance and dyslipidemia. The available data are currently insufficient to support the protective effects of Se on PCOS.


Sign in / Sign up

Export Citation Format

Share Document