Synthesis, evaluation of biological activity, docking and molecular dynamic studies of pyrimidine derivatives

2020 ◽  
Vol 17 ◽  
Author(s):  
Shahin Boumi ◽  
Jafar Moghimirad ◽  
Massod Amanlou ◽  
Seyed Nasser Ostad ◽  
Shohreh Tavajohi ◽  
...  

Background: The microtubule is composed of αβ-tubulin heterodimers and is an attractive target for the design of anticancer drugs. Over the years, various compounds have been developed and their effect on tubulin polymerization has been studied. Despite a great efforts to make an effective drug, no drug has been introduced which inhibit colchicine binding site. Objective: In the current work a series of pyrimidine derivatives were designed and synthesized. Furthermore their cytotoxic activities were evaluated and molecular docking studies were performed. Methods: Twenty compounds of pyrimidine were synthesized in 2 different groups. In the first group, 4,6-diaryl pyrimidine was connected to the third aryl group via thio-methylene spacer. In the second group, this linker was substituted by S-CH2- triazole moiety. The cytotoxic activity of these compounds was evaluated against 4 different cell lines (HT-29, MCF-7, T47D, NIH3T3). Results: Compounds 6d, 6m, 6p showed potent cytotoxic activity against MCF7 cancerous cell lines. Between these compounds, compound 6p did not show cytotoxic activity against NIH- 3T3 (normal cell) cell line. Docking studies show that these compounds occupy colchicine binding site in tubulin protein and probably their anticancer mechanism is inhibition of tubulin polymerization. Conclusion : Altogether, with respect to obtained results, it is attractive and beneficial to further investigation on pyrimidine scaffold as antimitotic agents. Attention to the selectivity index of 6p on MCF7 cell line could be valuable in design new chemical agents for treatment of breast cancer.

2019 ◽  
Vol 16 (11) ◽  
pp. 1194-1201 ◽  
Author(s):  
Farhad Saravani ◽  
Ebrahim Saeedian Moghadam ◽  
Hafezeh Salehabadi ◽  
Seyednasser Ostad ◽  
Morteza Pirali Hamedani ◽  
...  

Background: The role of microtubules in cell division and signaling, intercellular transport, and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs. Methods: A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model. Compound 5d as the most active compound was selected for studying of microtubule disruption. Results: Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling study revealed that some derivatives of triazine strongly bind to colchicine binding site. The tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition of tubulin polymerization. Conclusion: The cytotoxicity and molecular modeling study of the synthesized compounds with their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives for development of new anti-cancer agents.


Drug Research ◽  
2020 ◽  
Author(s):  
Shahin Boumi ◽  
Jafar Moghimirad ◽  
Seyed Nasser Ostad ◽  
Massoud Amanlou ◽  
Shohreh Tavajohi ◽  
...  

Abstract Objectives The microtubule is composed of αβ tubulin heterodimers and is an attractive target for the design of anticancer drugs. Over the years, various compounds have been developed and their effect on tubulin polymerization has been studied. Despite a great efforts to make an effective drug, no drug has been introduced which inhibit Colchicine binding site. Methods In the current work a series of pyrimidine derivatives were designed and synthesized. Furthermore their cytotoxic activities were evaluated and molecular docking studies were performed. Twelve compounds of pyrimidine were synthesized in 3 different groups. In the first group, 4,6-diaryl pyrimidine was connected to the third aryl group via thio-methylene spacer. In the second group, this linker was substituted by sulfoxide-methylene moiety and in the third group sulfone-methylene group was used as spacer. Results The cytotoxic activity of these compounds were evaluated against 3 different cancerous cell lines (HT-29, MCF-7, T47D) as well as normal cell line (NIH3T3). Compounds in group 2 showed the best cytotoxicity and compound 7d showed the most potent cytotoxic activity against all cell lines. Molecular modelling studies revealed that compound 7d could strongly bind to the colchicine binding site of tubulin. Conclusion Altogether, with respect to obtained results, it is attractive and beneficial to further investigation on pyrimidine scaffold as antimitotic agents.


2013 ◽  
Vol 64 (2) ◽  
Author(s):  
Siti Nur Atiqah Md Othman ◽  
Norazah Basar ◽  
Siti Pauliena Mohd Bohari

P. macrocarpa is a well known Indonesian medicinal plant which is traditionally claimed to have anticancer properties. To date, there are numerous cytotoxic studies conducted on crude extracts of this plant. However, there are limited informations available regarding cytotoxic activity of the compounds isolated from this plant. Thus, this study investigated cytotoxic activity of two benzophenones derivatives identified as 2,6,4'-trihydroxy-4-methoxybenzophenone (1) and 6,4'-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside (2) isolated from the ethyl acetate extract. Cytotoxic activities of these compounds were performed against human cervical carcinoma cell line (HeLa) and mouse embryonic fibroblast cell line (3T3) using MTT assay. The result showed that benzophenone (1)  exhibited low cytotoxic effect against HeLa and 3T3 cell lines with IC50 values of 132 µg/ml and 158 µg/ml, repectively while benzophenone (2) was non toxic against HeLa and 3T3 cell lines are because the IC50 is more than 250 µg/ml. These findings may sheds light on the actual properties of this plant.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2992
Author(s):  
Abdulmalik S. Altamimi ◽  
Adel S. El-Azab ◽  
Sami G. Abdelhamid ◽  
Mubarak A. Alamri ◽  
Ashraf H. Bayoumi ◽  
...  

A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM).


2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


1991 ◽  
Vol 56 (11) ◽  
pp. 2306-2312 ◽  
Author(s):  
Anjum Muzaffar ◽  
Ernest Hamel ◽  
Rouli Bai ◽  
Arnold Brossi

Synthesis of isothiocyanato substituted thiocolchicines XI - XIV is described. Introduction of an isotope label is demonstrated with the deuterated isothiocyanate XII and the 14C-labeled analog XIII. These isothiocyanates inhibit tubulin polymerization at low concentration. In addition, the 14C-labeled XIII forms covalent bond(s) with tubulin. Unfortunately, the covalent reaction while rapid, is not inhibited by preincubation of tubulin with colchicine. The covalent interaction of XIII with tubulin thus appears to be nonspecific, limiting its use as a marker of the colchicine binding site on tubulin.


2021 ◽  
Vol 11 (11) ◽  
pp. 5300
Author(s):  
Jozef Hudec ◽  
Jan Mojzis ◽  
Marta Habanova ◽  
Jorge A. Saraiva ◽  
Pavel Hradil ◽  
...  

Sarcopoterium spinosum (L.) is a medicinal plant traditionally used for the treatment of various diseases including cancer in the Near- and Middle East. The fractions and constituents of the ethanol extract of S. spinosum were screened for in vitro cytotoxic activities on Jurkat (acute T-lymphoblastic leukemia), HeLa (cervical adenocarcinoma), MCF-7 (mammary gland adenocarcinoma), Caco-2 (human colorectal adenocarcinoma), and MDA-MB-231 (mammary gland adenocarcinoma) cell lines using the MTT (3-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The ethanol extract was subsequently re-extracted with ethyl acetate and in its sub-fraction obtained by column chromatography three compounds (stachydrine, benzalkonium chloride and rutine) were the first time identified by nuclear magnetic resonance (NMR) analyses. The most active subfraction showed cytotoxic activity against HeLa, MCF-7, and Caco-2 cell lines. The three compounds mentioned, as standards of high-performance liquid chromatography (HPLC) quality, were studied individually and in combination. Cytotoxic activity observed might be due to the presence of benzalkonium chloride and rutin. Benzalkonium chloride showed the strongest growth suppression effect against HeLa cells (IC50 8.10−7 M) and MCF-7 cells (IC50 5.10−6 M). The mixture of stachydrine and benzalkonium chloride allowed a synergistic cytotoxic effect against all tested cancer and normal cells to be obtained. Anti-cancer activity of the plant extract of S. spinosum remains under-investigated, so this research describes how the three major compounds identified in the ethyl acetate extract can exert a significant dose dependent in vitro cytotoxicity.


2021 ◽  
Vol 16 (4) ◽  
pp. 1934578X2110100
Author(s):  
Pham The Chinh ◽  
Pham Thi Tham ◽  
Duong Huong Quynh ◽  
Nguyen Van Tuyen ◽  
Dinh Thuy Van ◽  
...  

Seven novel N-alkyl-plinabulin derivatives with aryl groups moieties (nitroquinoline, 1,4-dihydroquinoline, 4-methoxybenzene, and 4-chlorobenzene) have been synthesized via aldol condensation and alkylation in one-pot, and tested for their cytotoxicity against 4 cancer cell lines (KB, HepG2, Lu, and MCF7). Compounds ( Z)−3-((6,8-dimethyl-4-oxo-1,4-dihydroquinolin-2-yl)methylene)−6-(( Z)−4-methoxybenzylidene)−1-(prop-2-yn-1-yl)piperazine-2,5-dione (5a), ( Z)−6-(( Z)−4-methoxybenzylidene)−1-(prop-2-yn-1-yl)−3-((1,6,8-trimethyl-4-oxo-1,4-dihydroquinolin-2-yl)methylene)piperazine-2,5-dione (5b), and ( Z)−3-(( Z)−4-chlorobenzylidene)−1,4-dimethyl-6-((8-methyl-4-nitroquinolin-2-yl)methylene)piperazine-2,5-dione (8) showed strong cytotoxicity against 3 of the cancer cells lines (KB, HepG2 and Lu) with IC50 values ranging from 3.04 to 10.62 µM. The quinoline-derived compounds had higher cytotoxic activity than the benzaldehyde derivatives. The successful synthesis of these derivatives offers useful information for the development of more potent vascular disrupting agents based on plinabulin.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Menna El Gaafary ◽  
Tatiana Syrovets ◽  
Hany M. Mohamed ◽  
Ahmed A. Elhenawy ◽  
Ahmed M. El-Agrody ◽  
...  

The target compound 3-amino-1-(2,5-d ichlorophenyl)-8-methoxy-1H-benzo[f]-chromene-2-carbonitrile (4) was synthesized via a reaction of 6-methoxynaphthalen-2-ol (1), 2,5-dichlorobenzaldehyde (2), and malononitrile (3) in ethanolic piperidine solution under microwave irradiation. The newly synthesized β-enaminonitrile was characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, elemental analysis and X-ray diffraction data. Its cytotoxic activity was evaluated against three different human cancer cell lines MDA-MB-231, A549, and MIA PaCa-2 in comparison to the positive controls etoposide and camptothecin employing the XTT cell viability assay. The analysis of the Hirshfeld surface was utilized to visualize the reliability of the crystal package. The obtained results confirmed that the tested molecule revealed promising cytotoxic activities against the three cancer cell lines. Furthermore, theoretical calculations (DFT) were carried out with the Becke3-Lee-Yang-parr (B3LYP) level using 6-311++G(d,p) basis. The optimization geometry for molecular structures was in agreement with the X-ray structure data. The HOMO-LUMO energy gap of the studied system was discussed. The intermolecular-interactions were studied through analysis of the topological-electron-density(r) using the QTAIM and NCI methods. The novel compound exhibited favorable ADMET properties and its molecular modeling analysis showed strong interaction with DNA methyltransferase 1.


Sign in / Sign up

Export Citation Format

Share Document