Human Postnatal Mesenchymalstem Cell Derived Islets as a Model for Diabetes Research

2020 ◽  
Vol 17 ◽  
Author(s):  
Avinash Kharat ◽  
Bhawna Chadravanshi ◽  
Avinash Sanap ◽  
Supriya Kheur ◽  
Ramesh Bhonde

Background:: The scarcity of human cadaver islets for transplantation in patients with Diabetes Mellitus (DM) has necessitated the search for alternative islet sources. With advancing islet biology research, islet-like clusters (ILCs) derived from stem cells have demonstrated potential for treating DM and in novel drug discovery programs for drug and cytotoxicity testing. -: In vitro differentiation of ILCs from stem cells also provides an opportunity to mimic the in vivo islet developmental pathways. In vitro derived ILCs are often considered immature,as they do not respond to glucose challenge efficiently. However, the in vitro and in vivo performance of ILCs can be imroved by pharmacological preconditioning. Methods:: In this review, we discuss how ILCs generated from human postnatal tissues can be utilized as an in-vitro model to study cytotoxicity, drug screening and enhancement of transplantation efficacy. Use of human cadevar islets is not permitted for research purposes in India. Under these restrictions, the application of ILCs in drug screening and their role in complementing, reducing, and replacing animal testing will evolve a reliable platform in vitro screening as well as for stem cell-based treatment in DM.

Author(s):  
Anna Maria Bassi

The 21st century life science requires that scientists become aware of scientific and ethical issues of substitutive approaches to animal testing. For more than 20 years Dr Bassi Team at University of Genoa promotes several activities in Academia on the Replacement of Animal Testing: 2 days training course, lectures within teaching programs, work experience opportunities for graduated or graduating students, stages for Biology, Medicine and Surgery degrees and PhD courses on human in vitro model disease projects, This effort is now improved by Centro3R activities to increase the number of scientists aware of effective alternatives to classical in vivo approaches, and prevent needless suffering of animals.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2020 ◽  
Vol 74 (3) ◽  
pp. 187-196
Author(s):  
Jasmina Stojkovska ◽  
Jovana Zvicer ◽  
Milena Milivojevic ◽  
Isidora Petrovic ◽  
Milena Stevanovic ◽  
...  

Development of drugs is a complex, time- and cost-consuming process due to the lack of standardized and reliable characterization techniques and models. Traditionally, drug screening is based on in vitro analysis using two-dimensional (2D) cell cultures followed by in vivo animal testing. Unfortunately, application of the obtained results to humans in about 90 % of cases fails. Therefore, it is important to develop and improve cell-based systems that can mimic the in vivo-like conditions to provide more reliable results. In this paper, we present development and validation of a novel, user-friendly perfusion bioreactor system for single use aimed for cancer research, drug screening, anti-cancer drug response studies, biomaterial characterization, and tissue engineering. Simple design of the perfusion bioreactor provides direct medium flow at physiological velocities (100?250 ?m s-1) through samples of different sizes and shapes. Biocompatibility of the bioreactor was confirmed in short term cultivation studies of cervical carcinoma SiHa cells immobilized in alginate microfibers under continuous medium flow. The results have shown preserved cell viability indicating that the perfusion bioreactor in conjunction with alginate hydrogels as cell carriers could be potentially used as a tool for controlled anti-cancer drug screening in a 3D environment.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2627-2636
Author(s):  
U Duhrsen ◽  
G Knieling ◽  
HX Wu ◽  
DK Hossfeld

PGM-2 is a variant of the transplantable PGM-1 leukemia of strain C3H/HeJ. Freshly explanted cells had lymphoid morphology with a CD5+ CD45R (B220)- IgM- phenotype. They were not viable in unstimulated cultures, but formed IgM+ lymphoid colonies in response to interleukin- 2 (IL-2), IL-4, IL-5, IL-6, IL-7, and Steel factor, and macrophage colonies in response to IL-3. IL-3-stimulated colonies had no recloning potential, but colonies from IL-7 cultures gave rise to large numbers of secondary macrophage colonies in IL-3-stimulated cultures and secondary lymphoid colonies in IL-7-stimulated cultures. The latter ones could be serially transferred in vitro for several months, and formed typical PGM-2 tumors in vivo. IL-7-stimulated colonies could therefore be used to measure leukemic stem cells in vitro. Supramaximal IL-3 stimulation (2,500 U/mL) of suspension cultures was followed by an increase in overall cell numbers and a disappearance of leukemic stem cells, compatible with differentiation induction. This could not be counteracted by simultaneous stimulation with IL-7. However, lower IL-3 concentrations (500 U/mL) induced an expansion of the stem cell pool, possibly by facilitating density-dependent autostimulatory mechanisms involving endogenous production of IL-7. The system described is a simple in vitro model for differentiation therapy. It shows that leukemic stem cells can be induced by hematopoietic growth factors to undergo terminal differentiation, but the concentrations required for differentiation induction in stem cells are much higher than those required for other biologic effects. Submaximal stimulation may favor expansion rather than repression of the leukemic cell population.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2627-2636 ◽  
Author(s):  
U Duhrsen ◽  
G Knieling ◽  
HX Wu ◽  
DK Hossfeld

Abstract PGM-2 is a variant of the transplantable PGM-1 leukemia of strain C3H/HeJ. Freshly explanted cells had lymphoid morphology with a CD5+ CD45R (B220)- IgM- phenotype. They were not viable in unstimulated cultures, but formed IgM+ lymphoid colonies in response to interleukin- 2 (IL-2), IL-4, IL-5, IL-6, IL-7, and Steel factor, and macrophage colonies in response to IL-3. IL-3-stimulated colonies had no recloning potential, but colonies from IL-7 cultures gave rise to large numbers of secondary macrophage colonies in IL-3-stimulated cultures and secondary lymphoid colonies in IL-7-stimulated cultures. The latter ones could be serially transferred in vitro for several months, and formed typical PGM-2 tumors in vivo. IL-7-stimulated colonies could therefore be used to measure leukemic stem cells in vitro. Supramaximal IL-3 stimulation (2,500 U/mL) of suspension cultures was followed by an increase in overall cell numbers and a disappearance of leukemic stem cells, compatible with differentiation induction. This could not be counteracted by simultaneous stimulation with IL-7. However, lower IL-3 concentrations (500 U/mL) induced an expansion of the stem cell pool, possibly by facilitating density-dependent autostimulatory mechanisms involving endogenous production of IL-7. The system described is a simple in vitro model for differentiation therapy. It shows that leukemic stem cells can be induced by hematopoietic growth factors to undergo terminal differentiation, but the concentrations required for differentiation induction in stem cells are much higher than those required for other biologic effects. Submaximal stimulation may favor expansion rather than repression of the leukemic cell population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soujanya S. Karanth ◽  
Shuofei Sun ◽  
Huanjing Bi ◽  
Kaiming Ye ◽  
Sha Jin

AbstractIn vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and β cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.


2021 ◽  
Author(s):  
Jianhua Zhang ◽  
Julia Griesbach ◽  
Marsel Ganeyev ◽  
Anna-Katharina Zehnder ◽  
Peng Zeng ◽  
...  

Abstract Mechanical loading has been shown to influence various osteogenic responses of bone-derived cells and bone formation in vivo. However, the influence of mechanical stimulation on the formation of bone organoid in vitro is not clearly understood. Here, 3D bioprinted human mesenchymal stem cells (hMSCs)-laden graphene oxide composite scaffolds were cultured in cyclic-loading bioreactors for up to 56 days. Our results showed that mechanical loading from day 1 (ML01) significantly increased organoid mineral density, organoid stiffness, and osteoblast differentiation compared with non-loading and mechanical loading from day 21. Importantly, ML01 stimulated collagen I maturation, osteocyte differentiation, lacunar-canalicular network formation and YAP expression on day 56. These finding are the first to reveal that long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Such 3D bone organoids may serve as a human-specific alternative to animal testing for the study of bone pathophysiology and drug screening.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiyue Deng ◽  
Yuying Zhang ◽  
Wei Wang ◽  
Aishi Song ◽  
Omar Mukama ◽  
...  

Abstract Background Alopecia areata (AA) is a common autoimmune hair loss disease with increasing incidence. Corticosteroids are the most widely used for hair loss treatment; however, long-term usage of hormonal drugs is associated with various side effects. Mesenchymal stem cells (MSCs) therapy has been studied extensively to curb autoimmune diseases without affecting immunity against diseases. Methods Hair follicle-derived MSCs (HF-MSCs) were harvested from the waste material of hair transplants, isolated and expanded. The therapeutic effect of HF-MSCs for AA treatment was investigated in vitro AA-like hair follicle organ model and in vivo C3H/HeJ AA mice model. Results AA-like hair follicle organ in vitro model was successfully established by pre-treatment of mouse vibrissa follicles by interferon-γ (IFN-γ). The AA-like symptoms were relieved when IFN-γ induced AA in vitro model was co-cultured with HF-MSC for 2 days. In addition, when skin grafted C3H/HeJ AA mice models were injected with 106 HF-MSCs once a week for 3 weeks, the transcription profiling and immunofluorescence analysis depicted that HF-MSCs treatment significantly decreased mouse hair loss and reduced inflammation around HF both in vitro and in vivo. Conclusions This study provides a new therapeutic approach for alopecia areata based on HF-MSCs toward its future clinical application.


2011 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Yosef Gafni ◽  
Heled Rachima ◽  
Keren Marynks-Kalmani ◽  
Alex Blatt ◽  
Zvi Vered ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document