Protein Quality, Secondary Structure and Effect of Physicochemical Factors on Emulsifying Properties of Irvingia gabonensis Almonds

2019 ◽  
Vol 15 (4) ◽  
pp. 367-375
Author(s):  
Martin A. Mune Mune ◽  
Christian B. Bassogog ◽  
Pierre A. Bayiga ◽  
Carine E. Nyobe ◽  
Samuel R. Minka

Background: There is a constant search of new plant proteins, with adequate nutritional and functional properties, as well as bioactive properties and low-cost for utilization in various food formulations. Objective: The aim of this work was to access the nutritional and functional potential of protein from Irvingia gabonensis, for utilization as ingredient or supplement in food. Methods: Proximate composition and amino acid were analyzed. Nutritional parameters were calculated from amino acid composition. Physicochemical properties and secondary structure of protein were determined. Finally, effect of oil to water ratio (OWR), pH and concentration on emulsifying properties was analyzed. Results: The flour contained 22.26% protein, 5.30% ash and 60% carbohydrates. Proteins contained all essential amino acids, with high content of Leu, Ile, Val, Thr and sulfur-containing amino acids. Essential amino acid index (69%), protein efficiency ratio (2.39-2.63) and biological value (79.91%) were studied. The maximum protein solubility (61%) was noticed at pH 8, while high hydrophobicity was observed at pH 2. A transition from an irregular secondary structure to a more ordered structure was found from pH 2-4 to pH 6-10. pH, OWR and concentration significantly affected emulsifying properties of Irvingia gabonensis almonds. The maximum emulsifying capacity (EC) was observed under acidic pH and high flour concentration. EC increased with increasing OWR and concentration, while decreased with increasing pH. High ES (25-35%) was observed at pH 4-8 and OWR of 1/3 to 1/2 (v/v), at flour concentration of 3-4% (w/v). Conclusion: Irvingia gabonensis showed good potential as food ingredient or supplement.

2020 ◽  
Vol 25 (2) ◽  
pp. 30
Author(s):  
Ayodeji Ahmed Ayeloja ◽  
W. A. Jimoh ◽  
T. O. Uthman ◽  
M. O. Shittu

Effect of storage time on the quality of smoked heteroclarias was studied. 108 samples of heteroclarias (average weight 210 + 15g) was used. Analysis carried out include: proximate, mineral composition (Ca, Na, Fe and Mg), biochemical, amino acid and sensory evaluation. Data obtained was subjected to Analysis of Variance (ANOVA) while the sensory data was subjected to nonparametric test (Kruskal Wallis test). Smoked heteroclarias have good nutritional quality in terms of proximate, mineral and amino acids all of which decrease with increase in duration of storage at ambient temperatures. Glutamic acid  was the most predominant amino acid and the highest non-essential amino acid (NEEA), lysine was the most predominant EAA. There was higher concentration of non-essential amino acids than essential amino acids, EAA/NEAA ratio (0.86 – 0.93) recorded indicates that the fish have excellent protein quality; its the predicted protein efficiency ratio (P-PER) ranged between 3.44-3.61 and its biological value ranged between 79.84 -75.04. Its chemical score and TEAA decrease with increase in storage time. Its texture quality reduced significantly (χ2 = 12.207, p<0.01) with increased storage period. It is therefore recommended that smoked heteroclarias be consumed as soon as it is smoked and regularly for good healthy conditions especially among children, aged and other vulnerable groups.


2019 ◽  
Vol 110 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Paolo Tessari

ABSTRACT Background Essential amino acids (EAAs) are key factors in determining dietary protein quality. Their RDAs have been estimated. However, although nonessential amino acids (NEAAs) are utilized for protein synthesis too, no estimates of their usage for body protein replenishment have been proposed so far. Objective The aim of this study was to provide minimum, approximate estimates of NEAA usage for body protein replenishment/conservation in humans. Methods A correlation between the pattern of both EAAs and NEAAs in body proteins, and their usage, was assumed. In order to reconstruct an “average” amino acid pattern/composition of total body proteins (as grams of amino acid per gram of protein), published data of relevant human organs/tissues (skeletal muscle, liver, kidney, gut, and collagen, making up ∼74% of total proteins) were retrieved. The (unknown) amino acid composition of residual proteins (∼26% of total proteins) was assumed to be the same as for the sum of the aforementioned organs excluding collagen. Using international EAA RDA values, an average ratio of EAA RDA to the calculated whole-body EAA composition was derived. This ratio was then used to back-calculate NEAA usage for protein replenishment. The data were calculated also using estimated organ/tissue amino acid turnover. Results The individual ratios of World Health Organization/Food and Agriculture Organization/United Nations University RDA to EAA content ranged between 1.35 (phenylalanine + tyrosine) and 3.68 (leucine), with a mean ± SD value of 2.72 ± 0.81. In a reference 70-kg subject, calculated NEAA usage for body protein replenishment ranged from 0.73 g/d for asparagine to 3.61 g/d for proline. Use of amino acid turnover data yielded similar results. Total NEAA usage for body protein replenishment was ∼19 g/d (45% of total NEAA intake), whereas ∼24 g/d was used for other routes. Conclusion This method may provide indirect minimum estimates of the usage of NEAAs for body protein replacement in humans.


Author(s):  
Radha Palaniswamy ◽  
Dhanyasri Selvaraj ◽  
Sandhiya Renganathan

Objective: To determine the protein quality, especially the amino acid content of 8 tropical fruits both raw and boiled samples. Eight different tropical fruits were used in the study (Apricot, Jamun, Dragonfruit, Pomegranate, Mangustan, Litchi, Jackfruit, and Kiwi.Methods: Ninhydrin method was used for the estimation of the concentration of amino acids present in the above fruits. Raw and boiled fruits were used for the study.Results: Both raw and boiled forms which showed thats Jamun and Mangustan contained highest concentration amino acids whereas apricot shows the lowest concentration of amino acids except in Jamun which showed higher values in the raw fruit whereas in others the boiled samples showed higher values.Conclusion: It was evident that tropical fruits have a good balance of the essential amino acids (both raw and boiled fomr) which provide significant sources of protein in our diet.


1985 ◽  
Vol 68 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Ghulam Sarwar ◽  
Robert Blair ◽  
Mendel Friedman ◽  
Michael R Gumbmann ◽  
Ross L Hackler ◽  
...  

Abstract Estimates of inter- and intralaboratory variation of protein efficiency ratio (PER), relative PER (RPER), net protein ratio (NPR), relative NPR (RNPR), and nitrogen utilization (NU) were compared with those of amino acid analysis in the same batches of 7 protein sources (ANRC casein, egg white solids, minced beef, soy assay protein, rapeseed protein concentrate, pea flour, and whole wheat flour). Interlaboratory variation (estimated as between-laboratories coefficients of variation, CV) of NPR and RNPR (up to 6.0%) was lower than that of PER (up to 20.2%) and RPER (up to 18.5%). The interlaboratory determination of NPR and RNPR was also more reproducible than that of most essential amino acids (CV up to 10.0%), especially tryptophan (CV up to 23.7%), cystine (CV up to 17.6%), and methionine (CV up to 16.1%). Intralaboratory variation (estimated as within-laboratories CV) of amino acid analysis (up to 4.7%), however, was comparable to that of protein quality indices in most protein sources (up to 6.0%). The significant (P &lt;0.01) positive correlations (r = 0.68-0.74) between amino acid scores and protein quality indices based on rat growth were further improved when amino acid scores were corrected for digestibility of protein (r = 0.73-0.78) or individual amino acids (r = 0.79- 0.82).


2012 ◽  
Vol 108 (S2) ◽  
pp. S333-S336 ◽  
Author(s):  
Gertjan Schaafsma

PDCAAS is a widely used assay for evaluating protein quality. It is a chemical score, which is derived from the ratio between the first limiting amino acid in a test protein and the corresponding amino acid in a reference amino acid pattern and corrected for true faecal N digestibility. Chemical scores exceeding 100 % are truncated to 100 %. The advantages of the PDCAAS are its simplicity and direct relationship to human protein requirements. The limitations are as follows: the reference pattern is based on the minimum amino acid requirements for tissue growth and maintenance and does not necessarily reflect the optimum intake. Truncated PDCAAS of high-quality proteins do not give any information about the power of these proteins to compensate, as a supplement, for low levels of dietary essential amino acids in low-quality proteins. It is likely that faecal N digestibility does not take into account the loss from the colon of indispensable amino acids that were not absorbed in the ileum. Anti-nutritional factors, such as lectins and trypsin inhibitors, in several plant protein sources can cause heightened endogenous losses of amino acids, an issue which is particularly relevant in animal feedstuffs. The assumption that amino acid supplementation can completely restore biological efficiency of the protein source is incorrect since the kinetics of digestion and absorption between supplemented free amino acids and amino acids present in dietary proteins, are different.


2012 ◽  
Vol 108 (S2) ◽  
pp. S59-S68 ◽  
Author(s):  
Shane M. Rutherfurd ◽  
Kiran Bains ◽  
Paul J. Moughan

Cereals and legumes are staple foods in India and are limiting in lysine and sulphur amino acids, respectively. Available lysine loss, due to Maillard-type reactions that may occur during food preparation, exacerbates the problem of lysine deficiency particularly in cereals. Consequently, determining the contents of digestible essential amino acids, particularly lysine, is important. True ileal digestibilities of most amino acids (including total and reactive lysine) were determined for ten food ingredients and eleven foods commonly consumed in India. Semi-synthetic diets each containing either an ingredient or the prepared food as the sole protein source were formulated to contain 100 g kg− 1protein (75 g kg− 1for rice-based diets) and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected and the amino acid content (including reactive lysine) of diets and ileal digesta determined. Available (digestible reactive) lysine content ranged from 1·9–15·4 g kg− 1and 1·8–12·7 g kg− 1across the ingredients and prepared foods respectively. True ileal amino acid digestibility varied widely both across ingredients and prepared foods for each amino acid (on average 60–92 %) and across amino acids within each ingredient and prepared food (overall digestibility 31–96 %). Amino acid digestibility was low for many of the ingredients and prepared foods and consequently digestibility must be considered when assessing the protein quality of poorer quality foods. Given commonly encountered daily energy intakes for members of the Indian population, it is estimated that lysine is limiting for adults in many Indian diets.


2019 ◽  
Vol 9 (1) ◽  
pp. 32-37
Author(s):  
Jamaluddin ◽  
Nur Atina ◽  
Yonelian Yuyun

In this study used a sample of eel fish species Anguilla marmorata (Q.) Gaimard and Anguilla bicolor from Poso lake that has a high protein content and is a fish endemic to Central Sulawesi. These eels are consumed by the surrounding community of the lake, but the nutritional content remains unknown. The present research was aimed to determine the protein level and amino acid profile of Anguilla marmorata (Q.) Gaimard and Anguilla bicolor eels. The protein level testing used Kjeldahl method, and amino acid profile used High Performance Liquid Chromatography. The results demonstrate the protein level of the two samples Anguilla marmorata (Q.) Gaimard eels have a protein content of 41.84% and Anguilla bicoloreels at 33.75%. Anguilla marmorata (Q.) Gaimard and Anguilla bicolor eels contain 18 types of amino acid, comprised of 9 types of essential amino acids and 9 types of non-essential amino acids. Of the two samples of eel species Anguilla marmorata (Q.) Gaimard and Anguilla bicolor, have complete protein quality because it has all kinds of essential amino acids.


2020 ◽  
Vol 7 (15) ◽  
pp. 43-57
Author(s):  
Agada Adaeze Bob-Chile ◽  
Peter Uchenna Amadi

This study was carried out to determine the essential oil components, protein qualities, fatty acid composition, and free radical scavenging potentials of leaves of Cola lepidota K. Schum. (Malvaceae) and Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. (Irvingiaceae) using chromatographic and spectrophotometric methods. Thirty five bioactive components were isolated from C. lepidota leaves with myrcene, phytol, ephedrine, hexadecanoic acid, and 1,14-tetradecanediol as the main compounds while phytol, 2-furancarboxaldehyde, 5-(hydroxymethyl)-, 1-hexadecyne, carotene, and humulene were the predominant components of the I. gabonensis leaves. Leucine and arginine were the predominant essential amino acids, whereas glutamic acid and serine were the main non-essential amino acids in both leaves. The total amino acid (TAA) (70.92 g/100g), total non-essential amino acid (TNEAA) (45.87 g/100 g), and total acidic amino acid (TAAA) (23.01 g/100 g) of C. lepidota were high whereas I. gabonensis recorded higher Total essential amino acid (TEAA) (28.98 g/100 g), total aromatic amino acid (TArAA) (7.21 g/100 g), total branched chain amino acid (TBCAA) (14.28 g/100g), predicted protein efficiency ratios (P-PERs), and essential amino acid index (EAAI). C. lepidota contained 55.72% of unsaturated fatty acids, with predominance of linolenic and linoleic acids, while I. gabonensis produced 74.46% of saturated fatty acids, having myristic, lauric, and palmitic acid as the main compounds. All the radical scavenging potentials of both leaves were concentration dependent and produced higher DPPH, hydrogen peroxide, and ABTS radical scavenging potentials than the standards. This study has thus provided the scientific backing for the inclusion of both leaves for dietary and therapeutic purposes.


2016 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Efosa Ewere ◽  
Oboso Etim ◽  
Usunomena Usunobun

Several plants are utilized for medicinal and nutritional purposes. Irvingia gabonensis O’Rorke Baill leaf is used in herbal medicine for treatment of a number of ailments. This study was therefore carried out to investigate the proximate composition, antinutritional factors, mineral composition and amino acid profile of Irvingia gabonensis O’Rorke Baill leaf. The proximate and antinutritional factors analyses were done using standard procedures. The mineral analyses were done using flame photometry, titrimetic method, molybdo vanadate method and atomic absorption spectrophotometry and the amino acid profile was done with the aid of Applied Biosystems PTH amino acid analyzer. Results of proximate analyses were carbohydrates (75.15±1.29 %), protein (11.43±1.07 %), fat (1.99±0.74 %), fibre (4.89±0.61 %), ash (6.71±0.28 %), moisture (5.12±0.03 %) and caloric value (364.30±5.95 Kcal). Antinutrients (phytate, oxalate and cyanide) levels in the leaf were also very low. Results from mineral analyses obtained revealed that the leaf is also a very rich source of calcium, potassium, sodium, magnesium and so on. Compared with the World health organization (WHO) standards, results of the amino acid profile showed that the leaf is very rich in isoleucine, leucine, lysine, phenylalanine, threonine, valine and tyrosine which are nutritionally essential amino acids. Furthermore, extraction of the leaf using ethanol reduced the levels of these amino acids but not below the recommended WHO standard levels for most of the essential amino acids. Irvingia gabonensis O’Rorke Baill leaf is therefore a potential source of key nutrients.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-19
Author(s):  
Olawale Paul Olatidoye ◽  
Taofik Akinyemi Shittu ◽  
Samuel Olusegun Anwonorin ◽  
Emmanuel Sunday Akin Ajisegiri

Cashew kernels are one of the most concentrated food products due to their fat and protein content and they are used in puddings and bakery products, hence the determination of their protein quality is an important nutritional factor in dietary protein requirements. Therefore, the study aimed at evaluating the effect of roasting conditions on the protein quality of cashew kernels at the temperature of 100–160 °C and time (20–60 min), and then analysing for the amino acid profile by GC-FID; protein predicted efficiency ratio (P-PER), essential amino acid index (EAAI), and the Isoelectric point (pI). About 2.0 kg of dried cashew kernels used were defatted using chloroform/methanol (2:1/v/v) as the extraction solvent and then analysed using standard methods. The results showed that seventeen amino acids were present in cashew nuts, where glutamic acid (15.27g/100gN); aspartic acid (12.20g/100gN); lysine (6.09g/100g N), and phenylalanine (5.06g/100g N) were predominant. Eight essential amino acids were present in cashew kernels, the highest value of 7.33g/100g were for lysine (6.09g/100gN); 1.70g/100gN (histidine); 3.42g/100gN (threonine); 3.63g/100gN (valine); 3.57 g/100gN (isoleucine); 7.33g/100gN (leucine); and 5.06g/100gN (phenylalanine). Roasting reduced the lysine content by 18.4%, phenylalanine by 12.06%, and aspartic acid by 41.4% at 160°C for 60 min, while serine (58.9%); glutamic acid (19.7%); arginine (47.4%), and histidine (115.9%) were increased, suggesting that cashew nuts contain high quality protein. P-PER results were 2.57 (raw), 171-2.61 (roasted); EAAI is 1.55(raw) and 1.38-1.55 (roasted), BV% is 76.15 (raw) and 67.61-76.89 (roasted); the Isoelectric points were 4.65 (raw) and 3.87- 4.54 (roasted), The Leu/Ileu ratio was 2.12 (raw) and 2.01-2.67 (roasted). It was concluded that the heat treatment used does not significantly affect the amino acid profile of cashew kernels, thus preserving their nutritional quality.


Sign in / Sign up

Export Citation Format

Share Document