No Difference Between Iron Supplementation Only and Iron Supplementation with Synbiotic Fermented Milk on Iron Status, Growth, and Gut Microbiota Profile in Elementary School Children with Iron Deficiency

2020 ◽  
Vol 16 (2) ◽  
pp. 220-227 ◽  
Author(s):  
Siti Helmyati ◽  
Endang Sutriswati Rahayu ◽  
Bernadette Josephine Istiti Kandarina ◽  
Mohammad Juffrie

Background: Iron deficiency may inhibit the height increase and weight gain of children. On the other hand, the supplementation of iron causes gut microbiota imbalance which leads to inflammation and diarrhea. The addition of synbiotic fermented milk is expected to have beneficial effects on iron supplementation. This study aimed to determine the effects of iron supplementation only and its administration with synbiotic fermented milk on iron status, body height and weight, and gut microbiota profile of iron deficient elementary school children. Methods: This research was an experimental study with pre and post test conducted on 59 irondeficient children. Subjects were given iron supplementation in syrups (IS group) or given iron supplementation in syrup with fermented milk (containing synbiotic Lactobacillus plantarum Dad 13 and fructo-oligosaccharide) (ISFM group) for 3 months. The body weight and height, hemoglobin and serum ferritin levels, and total number of Lactobacilli, Enterobacteria, Bifidobacteria, and Escherichia coli were measured at the beginning and the end of the study. Results: The body height in the ISFM group increased significantly than that in IS group after the intervention (1.67 vs. 2.42, p<0.05). The hemoglobin and serum ferritin levels in IS and ISFM groups were improved significantly (p<0.05) although the difference between the two groups was not significant (p>0.05). The results showed no significant difference of gut microbiota profile between the IS and ISFM groups (p>0.05). Conclusion: There is no difference on the iron status, height, weight, and gut microbiota profile of iron-deficient primary school children received iron supplementation only or iron supplementation with synbiotic fermented milk.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2052-2052
Author(s):  
Eldad A. Hod ◽  
Eric H. Ekland ◽  
Shruti Sharma ◽  
Boguslaw S. Wojczyk ◽  
David A. Fidock ◽  
...  

Abstract Abstract 2052 To clarify the interactions between iron status, oral iron supplementation, and bacterial and malarial infections, we examined iron-replete mice and mice with dietary iron deficiency infected with Salmonella typhimurium, Plasmodium yoelii, or both, with and without oral iron administration. These studies were designed to identify potential mechanisms underlying the increased risk of severe illness and death in children in a malaria-endemic region who received routine iron and folic acid supplementation during a randomized, controlled trial in Pemba, Tanzania (Sazawal et al. Lancet 2006;367:133-43). To this end, weanling C57BL/6 female mice were fed an iron-replete or an iron-deficient diet, the latter of which resulted in severe iron deficiency anemia. Groups of mice were then infected by intraperitoneal injection of Salmonella typhimurium strain LT2, Plasmodium yoelii strain 17X parasites, or both. With Salmonella infection alone, iron-deficient mice had a median survival (7.5 days, N=8) approximately half that of iron-replete mice (13 days, N=10, p<0.0001). At death, the mean level of bacteremia was significantly higher in infected iron-deficient mice. In blood cultures performed at death, all iron-deficient mice were bacteremic, but bacteria were detected in only 4 of 10 iron-replete mice. Both iron-deficient and iron-replete Salmonella-infected mice had gross hepatosplenomegaly with hepatitis, distorted hepatic and splenic architecture, massive expansion of the splenic red pulp with inflammatory cells, and Gram-negative bacilli by tissue Gram stain. With P. yoelii infection alone, iron-deficient and iron-replete mice cleared the infection at similar rates (by ~13 days following infection, N=5 in each group) and no deaths due to parasitemia occurred. With Salmonella and P. yoelii co-infection, death was earlier than with Salmonella alone in iron-replete mice (median survival of 10 vs. 13 days; N=10 in each group; p=0.005), but not in iron-deficient mice (median survival of 7 vs. 7.5 days; N=10 and 8, respectively; p=0.8). To examine the effect of short-term oral iron supplementation with Salmonella infection alone, mice received daily iron (ferrous sulfate, 1 mg/kg) by gavage for 4 days before infection with Salmonella, and supplementation continued for a total of 10 days. After gavage, plasma non-transferrin-bound iron (NTBI) appeared at 1–2 hours with a mean peak level of approximately 5 μM. In iron-deficient mice, short-term oral iron supplementation did not fully correct the iron deficiency anemia or replenish iron stores. Oral iron supplementation reduced the median survival of both iron-deficient and iron-replete Salmonella-infected mice by approximately 1 day; the difference was significant only in the iron-replete group (N=5, p<0.05). In summary, these results indicate that iron deficiency decreases the survival of Salmonella-infected mice; the median survival of iron-deficient mice was approximately half that of those that were iron replete. These observations are similar to those in the Pemba sub-study in which iron-deficient children given placebo had a 200% increase in the risk of adverse events relative to iron-replete children. Iron deficiency had no apparent effect on the course of infection with P. yoelii but further studies with more virulent Plasmodium species are needed. Co-infection with Salmonella and Plasmodium significantly increased mortality as compared to single infections, but only in iron-replete mice. Oral iron supplementation of Salmonella-infected mice significantly decreased the median survival, but only of iron-replete animals; however, our study may have had insufficient power to detect an effect on iron-deficient mice. Systematic examination in mice of the effect of iron supplements on the severity of malarial and bacterial infection in iron-replete and iron-deficient states may ultimately help guide the safe and effective use of iron interventions in humans in areas with endemic malaria. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2934-2939 ◽  
Author(s):  
Pauli Suominen ◽  
Kari Punnonen ◽  
Allan Rajamäki ◽  
Kerttu Irjala

Despite the established utility of serum transferrin receptor (sTfR), serum ferritin, and the sTfR/log ferritin ratio (TfR-F Index) in the diagnosis of iron deficiency (ID) anemia, the numeric values of these parameters, which are indicative of subclinical ID, remain to be clearly defined. In this study, 65 apparently healthy nonanemic adults (22 men and 43 women) were treated with 3 months of oral iron supplementation to evaluate its effect on parameters reflecting iron status and to determine the prevalence of subclinical iron deficiency in apparently healthy adults. Significant supplementation-induced changes were observed in sTfR, ferritin, and TfR-F Index values in women, whereas in men, none of the studied parameters showed any significant change. Iron-deficient erythropoiesis (IDE) was not observed in men, but was found in 17 women (40%). Although individuals with a compromised iron status may be represented in substantial numbers in conventional reference populations, they can be readily identified using sTfR, ferritin, and TfR-F Index determinations. © 1998 by The American Society of Hematology.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 19677-19677
Author(s):  
G. Riebandt ◽  
S. A. South ◽  
K. Odunsi ◽  
S. Lele ◽  
K. Rodabaugh

19677 Background: Anemia is a common consequence of cancer which significantly impacts patient quality of life. The mainstay of treatment for cancer- and chemotherapy-related anemia is erythropoietin therapy. However, approximately 30% to 50% of patients will not respond to these growth factors. The literature attributes this lack of response to functional iron deficiency, when iron stores are normal but the body cannot meet the increased rate of erythropoiesis. We evaluated the iron status of patients with ovarian malignancies receiving chemotherapy and erythropoietin therapy to establish a baseline for implementation of an intervention service. Methods: After obtaining Institutional Review Board approval, we identified 55 ovarian cancer patients receiving erythropoietin therapy from January to December 2005. We then performed a retrospective chart review for patients who had iron studies available. Results: Thirty-four patients had complete iron studies performed, while an additional 10 had only a ferritin level obtained. The mean hemoglobin for all patients was 9.9g/dl (6.9–13.1) with a mean MCV (mean corpuscular volume) of 92.7fl. Four (12%) patients were iron deficient based on ferritin <100ng/ml and iron saturation <20%. However, these patients had normal MCVs, indicating iron deficiency was not the etiology of their anemia. A few patients were assessed for B12 and folate deficiency, but none were identified. Interestingly, we had 22 patients with elevated ferritin levels (greater than 322ng/ml), with the highest being 2178ng/ml. Conclusions: Our results identified a few patients who were iron deficient, but none were diagnosed with iron deficiency anemia. Therefore, the role of routine iron screening in patients with a normal MCV prior to initiation of erythropoietin therapy is in question. We believe that functional iron deficiency may contribute to anemia in our population. Therefore, we suggest that all patients receive iron supplementation at erythropoietin therapy initiation. We plan to prospectively assess the optimal route of iron administration in ovarian cancer patients in order to improve the response rate to erythropoietic growth factors. No significant financial relationships to disclose.


2011 ◽  
Vol 81 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Daniel J. Raiten ◽  
Sorrel Namasté ◽  
Bernard Brabin

In 2006, the World Health Organization and the United Nations Children’s Fund released a joint statement advising that, in regions where the prevalence of malaria and other infectious diseases is high, iron and folic acid supplementation should be limited to those who are identified as iron-deficient. Although precipitated, in large part, by a recent report of adverse events associated with iron supplementation in children, questions about the risk/benefit of iron deficiency and mechanisms underlying potential adverse effects of iron in the context of infection are long-standing. Moreover, the implementation of this revised policy is compromised in most settings by the lack of consensus on the best methods to screen for iron deficiency. In response to these concerns a comprehensive review was conducted by a Technical Working Group (TWG), constituted by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the U.S. National Institutes of Health, in partnership with the Bill and Melinda Gates Foundation. The review included an evaluation of the putative mechanisms associated with adverse effects of iron in the context of malaria; applicability of available biomarkers for assessing iron status in the context of infections; and evaluation of evidence with regard to the safety and effectiveness of available interventions to prevent iron deficiency, particularly in areas of endemic malaria. The aim of this paper is to summarize the technical details of the larger TWG review conclusion that the occurrence and mechanism(s) of adverse effects associated with providing iron supplements (i. e., pills/liquid) under conditions of malaria and high infection exposure remain a concern, especially in settings where care and treatment are not readily available or accessible. Iron deficiency remains a problem that demands appropriate clinical care. When target groups have already been identified as being iron-deficient, iron supplementation is the intervention of choice for the treatment of anemia and other manifestations of iron deficiency. Of available intervention options to prevent iron deficiency, supplements are probably least desirable, particularly for infants and children. This paper also provides a synopsis of the TWG responses to the recently published Cochrane Review on the safety of iron supplementation for children in the context of malaria, and a research agenda outlined by the TWG that can best address outstanding questions.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2934-2939 ◽  
Author(s):  
Pauli Suominen ◽  
Kari Punnonen ◽  
Allan Rajamäki ◽  
Kerttu Irjala

Abstract Despite the established utility of serum transferrin receptor (sTfR), serum ferritin, and the sTfR/log ferritin ratio (TfR-F Index) in the diagnosis of iron deficiency (ID) anemia, the numeric values of these parameters, which are indicative of subclinical ID, remain to be clearly defined. In this study, 65 apparently healthy nonanemic adults (22 men and 43 women) were treated with 3 months of oral iron supplementation to evaluate its effect on parameters reflecting iron status and to determine the prevalence of subclinical iron deficiency in apparently healthy adults. Significant supplementation-induced changes were observed in sTfR, ferritin, and TfR-F Index values in women, whereas in men, none of the studied parameters showed any significant change. Iron-deficient erythropoiesis (IDE) was not observed in men, but was found in 17 women (40%). Although individuals with a compromised iron status may be represented in substantial numbers in conventional reference populations, they can be readily identified using sTfR, ferritin, and TfR-F Index determinations. © 1998 by The American Society of Hematology.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1353 ◽  
Author(s):  
Zhenglin Dong ◽  
Dan Wan ◽  
Huansheng Yang ◽  
Guanya Li ◽  
Yiming Zhang ◽  
...  

Few studies focused on the effects of iron on characterizing alterations of metabolic processes in neonatal piglets. In the present study, 16 neonatal piglets were randomly assigned to two groups. In the first group piglets were given an intramuscularly injection of iron dextran at 150 mg as a positive control (CON) and the second group were not supplemented with iron as a negative control for iron deficiency (ID). At day 8, iron status, serum biochemical parameters, serum metabolome, hepatic histology, and hepatic expression of genes for the metabolism were analyzed. Results indicated that piglets without iron supplementation had significantly reduced iron values and increased blood urea nitrogen concentrations at day 8 (p < 0.05). Analysis of serum metabolome revealed that concentrations of serum lysine, leucine, tyrosine, methionine, and cholesterol were significantly decreased while concentrations of 3-Methyldioxyindole, chenodeoxycholate acid, indoleacetic acid, icosadienoic acid, phenylpyruvic acid, pantothenic acid, ursocholic acid, and cholic acid were significantly increased in iron deficient piglets (p < 0.05). Furthermore, expressions of cyp7a1 and the urea cycle enzyme (ornithinetranscarbamoylase and argininosuccinate synthetase) were significantly increased in iron deficient pigs (p < 0.05). The present experimental results indicated that neonatal piglets without iron supplementation drop to borderline anemia within 8 days after birth. Iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets, suggesting early effects on metabolic health of neonatal piglets.


2021 ◽  
Author(s):  
Rebecka Hansen ◽  
Anne Lærke Spangmose ◽  
Veronika Markova Sommer ◽  
Charlotte Holm ◽  
Finn Stener Jørgensen ◽  
...  

Abstract Purpose: To assess the following in singleton pregnant women: 1) associations between first trimester iron deficiency and obstetric and perinatal outcomes, 2) overall first trimester iron status and 3) post-treatment iron status after intensified iron supplementation.Methods: Prospective cohort study with linkage of first trimester hemoglobin and plasma ferritin with obstetric and perinatal data from a hospital database. Blood sample data were obtained at a Danish University Hospital. The cohort was divided into groups according to ferritin and hemoglobin: (1) iron deficient anemic (ferritin <30 ng/mL and Hb <110 g/L), (2) iron deficient non-anemic (ferritin <30 ng/mL and Hb ≥110 g/L), and (3) iron replete non-anemic (ferritin 30–200 ng/mL and Hb ≥110 g/L). Obstetric and perinatal outcomes in each iron deficient group were compared to the iron replete non-anemic group using multivariable logistic regression. The effect of 2–8 weeks intensified iron supplementation on hemoglobin and ferritin were assessed by pairwise comparisons.Results: The cohort comprised 5,763 singleton pregnant women, of which 14.2% had non-anemic iron deficiency, and 1.2% had iron deficiency anemia. Compared to iron replete non-anemic women, iron deficient anemic women had a higher risk of gestational diabetes (aOR 3.8, 95% CI 1.4–9.0), and iron deficient non-anemic women had a higher risk of stillbirth (aOR 4.0, 95% CI 1.0–14.3). In group 1 and 2, 78.7% and 67.8% remained iron deficient after intensified iron supplementation. Conclusion: First trimester iron deficiency may be associated with gestational diabetes and stillbirth. First trimester iron deficiency was present in 15.4% and often persisted despite 2–8 weeks intensified iron supplementation.


2011 ◽  
Vol 68 (2) ◽  
pp. 130-135 ◽  
Author(s):  
Slavica Radjen ◽  
Goran Radjen ◽  
Mirjana Zivotic-Vanovic ◽  
Sonja Radakovic ◽  
Nadja Vasiljevic ◽  
...  

Background/Aim. Iron is a vital constituent of hemoglobin, myoglobin, and some mitochondrial enzymes; therefore, body iron deficiency may result in reduced aerobic capacity. The aim of this study was to evaluate the effects of daily oral iron supplementation on body iron status, and the maximal oxygen uptake (VO2max) in female athletes with latent iron deficiency, as well as with irondeficiency anemia. Methods. A total of 37 female volleyball players were included in the study. Seventeen female athletes had latent iron deficiency, and 20 ones iron deficiency anemia. Both groups were divided into the experimental and the control group. The experimental groups received a daily oral iron supplement (200 mg ferrous sulfate), for a two-month training course. Iron status was determined by serum parameters as follows: red blood cells count, hemoglobin concentration, serum iron and ferritin levels, an unsaturated iron binding capacity, total iron binding capacity and transferrin saturation. VO2max was determined by an indirect test. Results. Statistical difference between the latent iron deficient group versus the iron deficient anemic group was found regarding VO2max (p < 0.001). There were correlations between hemoglobin concentration and VO2max in the latent iron deficient group, as well as in the iron deficient anaemic group (p < 0.05). After two months, there was a significant increase in VO2max in all groups (from 7.0% to 18.2%). Values of VO2max at the end of training period were significantly different (45.98 ? 1.76 vs 42.40 ? 1.22 mL/kg/min; p <0.001) between the experimental and the control group only in female athletes with iron deficiency anemia. After the supplementation, markers of iron status were significantly higher in supplemented groups than in the controls. Conclusion. VO2max was significantly lower in the iron deficient anemic group versus the latent iron deficient group. Iron supplementation during a two-month training period significantly improved body iron status in the iron deficient female athletes with or without anemia, and significantly increased VO2max only in the subjects with iron deficiency anemia.


Sign in / Sign up

Export Citation Format

Share Document