Aptamer-based Cell Recognition and Detection

2021 ◽  
Vol 17 ◽  
Author(s):  
Liyan Zheng ◽  
Qiang Zhang ◽  
Yutong Zhang ◽  
Liping Qiu ◽  
Weihong Tan

: Cells, regarded as the structural and functional units of organisms, have become one of the most important objects in many research areas. Specific recognition and detection of malignant cells are critical for disease diagnosis, therapy and prognosis. Aptamers are short; single-stranded oligonucleotides screened from a random library by an in vitro technology termed “Systematic Evolution of Ligands by Exponential Enrichment” (SELEX) on the basis of their specific binding to target cargos. With the advantages of small size, easy synthesis, convenient modification, high chemical stability and low immunogenicity, aptamers have attracted broad attention in bioanalysis. Using intact living cells as the selection target, the cell-SELEX technology enables the generation of many aptamers that can specifically recognize molecular signatures of target cells. These aptamers have been extensively utilized in various cell-based research. In this mini-review, we focus on recent advances in aptamer-based recognition and detection of cells, particularly circulating tumor cells (CTCs).

2020 ◽  
Vol 21 (8) ◽  
pp. 2793 ◽  
Author(s):  
Zhaoying Fu ◽  
Jim Xiang

The arrival of the monoclonal antibody (mAb) technology in the 1970s brought with it the hope of conquering cancers to the medical community. However, mAbs, on the whole, did not achieve the expected wonder in cancer therapy although they do have demonstrated successfulness in the treatment of a few types of cancers. In 1990, another technology of making biomolecules capable of specific binding appeared. This technique, systematic evolution of ligands by exponential enrichment (SELEX), can make aptamers, single-stranded DNAs or RNAs that bind targets with high specificity and affinity. Aptamers have some advantages over mAbs in therapeutic uses particularly because they have little or no immunogenicity, which means the feasibility of repeated use and fewer side effects. In this review, the general properties of the aptamer, the advantages and limitations of aptamers, the principle and procedure of aptamer production with SELEX, particularly the undergoing studies in aptamers for cancer therapy, and selected anticancer aptamers that have entered clinical trials or are under active investigations are summarized.


2020 ◽  
Vol 21 (22) ◽  
pp. 8774
Author(s):  
Natalia Komarova ◽  
Daria Barkova ◽  
Alexander Kuznetsov

Aptamers are nucleic acid ligands that bind specifically to a target of interest. Aptamers have gained in popularity due to their high potential for different applications in analysis, diagnostics, and therapeutics. The procedure called systematic evolution of ligands by exponential enrichment (SELEX) is used for aptamer isolation from large nucleic acid combinatorial libraries. The huge number of unique sequences implemented in the in vitro evolution in the SELEX process imposes the necessity of performing extensive sequencing of the selected nucleic acid pools. High-throughput sequencing (HTS) meets this demand of SELEX. Analysis of the data obtained from sequencing of the libraries produced during and after aptamer isolation provides an informative basis for precise aptamer identification and for examining the structure and function of nucleic acid ligands. This review discusses the technical aspects and the potential of the integration of HTS with SELEX.


2021 ◽  
pp. 100-103
Author(s):  
A.V. Blagodatova ◽  
◽  
K.V. Kochkina ◽  
M.A. Komarova ◽  
N.Y. Trofina ◽  
...  

The aim of the research. To obtain aptamers-inhibitors of platelet glycoprotein IIb / IIIa receptors, blocking platelet aggregation. Material and methods. Th e selection of aptamers for IIb / IIIa receptors of platelets was carried out according to the SELEX method (Systematic Evolution of Ligands by Exponential Enrichment), modifi ed to select aptamers for a specifi c epitope. Th e method allows selection and in vitro evolution of aptamers with selectivity to a specifi c target from a large library of oligonucleotides. Th e affi nity of aptamers for platelet IIb / IIIa receptors was determined using fl ow cytometry. Results. Pools of aptamers of aptamers with high affi nity for IIb / IIIa platelet receptors were obtained. Th e study of the antiaggregation properties of the pools with the best binding showed that platelet aggregation was minimal when using the aptamers from the pool of the 5th round of selection. Th us, the aptamers of this pool have the greatest potential to be used as an analogue of a synthetic peptide that blocks thromboaggregation. Aptamers from this pool were taken for sequencing in order to obtain sequences of aptamers with the best antiaggregatory properties. Conclusion. Pools of aptamers with high affi nity for IIb / IIIa receptors of platelets and anticoagulant activity were obtained.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaewta Rattanapisit ◽  
Balamurugan Shanmugaraj ◽  
Suwimon Manopwisedjaroen ◽  
Priyo Budi Purwono ◽  
Konlavat Siriwattananon ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing global outbreak of coronavirus disease (COVID-19) which is a significant threat to global public health. The rapid spread of COVID-19 necessitates the development of cost-effective technology platforms for the production of vaccines, drugs, and protein reagents for appropriate disease diagnosis and treatment. In this study, we explored the possibility of producing the receptor binding domain (RBD) of SARS-CoV-2 and an anti-SARS-CoV monoclonal antibody (mAb) CR3022 in Nicotiana benthamiana. Both RBD and mAb CR3022 were transiently produced with the highest expression level of 8 μg/g and 130 μg/g leaf fresh weight respectively at 3 days post-infiltration. The plant-produced RBD exhibited specific binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, the plant-produced mAb CR3022 binds to SARS-CoV-2, but fails to neutralize the virus in vitro. This is the first report showing the production of anti-SARS-CoV-2 RBD and mAb CR3022 in plants. Overall these findings provide a proof-of-concept for using plants as an expression system for the production of SARS-CoV-2 antigens and antibodies or similar other diagnostic reagents against SARS-CoV-2 rapidly, especially during epidemic or pandemic situation.


2019 ◽  
Vol 19 (10) ◽  
pp. 788-795
Author(s):  
Weibin Li ◽  
Meng Zhao ◽  
Huihui Yan ◽  
Kaiyu Wang ◽  
XIaopeng lan

: Aptamers are single-stranded DNA or RNA oligonucleotides generated by a novel in vitro selection technique termed Systematic evolution of ligands by exponential enrichment (SELEX). During the past two decades, various aptamer drugs have been developed and many of them have entered into clinical trials. : In the present review, we focus on aptamers as potential therapeutics for hematological diseases, including anemia of chronic inflammation (ACI) and anemia of chronic disease (ACD), hemophilia, thrombotic thrombocytopenic purpura (TTP) or VWD type-2B, and sickle cell disease (SCD), in particular, those that have entered into clinical trials


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ryan M. Williams ◽  
Letha J. Sooter

Differential cell systematic evolution of ligands by exponential enrichment (SELEX) is anin vitroselection method for obtaining molecular recognition elements (MREs) that specifically bind to individual cell types with high affinity. MREs are selected from initial large libraries of different nucleic or amino acids. This review outlines the construction of peptide and antibody fragment libraries as well as their different host types. Common methods of selection are also reviewed. Additionally, examples of cancer cell MREs are discussed, as well as their potential applications.


Author(s):  
Takehiro Ando ◽  
Mizuki Yamamoto ◽  
Yukio Takamori ◽  
Keita Tsukamoto ◽  
Daisuke Fuji ◽  
...  

ABSTRACT Interleukin-6 (IL-6) binds to IL-6 receptor (IL-6R) subunit, related to autoimmune diseases and cytokine storm in COVID-19. In this study we performed Systematic Evolution of Ligands by Exponential enrichment (SELEX) and identified a novel RNA aptamer. This RNA aptamer not only bound to IL-6R with a dissociation constant of 200 nM, but also inhibited the interaction of IL-6R with IL-6.


1997 ◽  
Vol 01 (02) ◽  
pp. 121-129 ◽  
Author(s):  
L. Jortikka ◽  
M. Laitinen ◽  
J. Wiklund ◽  
T. S. Lindholm ◽  
A. Marttinen

Bone morphogenetic proteins (BMPs) are multifunctional proteins capable of inducing an osteogenic phenotype in various cell lines and providing alternatives to bone grafts in the field of orthopaedics. Study was carried out here of the specific binding and stimulation of markers of bone metabolism by highly purified native bovine BMP in rat skeletal myoblasts (L6). Binding studies using 125I-labeled BMP and various concentrations of unlabeled BMP showed the existence of a single-class, one-binding-site BMP receptor. The binding was time-, temperature- and dose-dependent in various experiments. In assessing the capacity of BMP to induce myoblasts to differentiate into the osteoblast lineage, osteocalcin production was initiated, alkaline phosphatase activity increased approximately four-fold and calcium uptake almost three-fold compared with control cells during four days culturing with 12.5 μg/ml of BMP. These results indicate that the L6 myoblast is a target cell for the action of native BMP, and under the influence of BMP L6 myoblasts are capable of differentiating in the direction of osteoblasts. This BMP-induced differentiation of myoblasts offers a novel assay system for in vitro detection of osteoinductivity and investigation of the mechanism of ectopic bone formation.


Sign in / Sign up

Export Citation Format

Share Document