Development and Validation of a Microbiological Agar Assay for Determination of Thiamphenicol in Soft Capsules

2020 ◽  
Vol 16 (7) ◽  
pp. 806-813
Author(s):  
Yugo Araújo Martins ◽  
Reginaldo dos Santos Sousa ◽  
Cristiani Lopes Capistrano Gonçalves de Oliveira

Background: Thiamphenicol belongs to the amphenicol class of antibiotic and possesses a broad-spectrum antimicrobial activity. An alternative microbiological assay for quantification of thiamphenicol in pharmaceutical formulations has not yet been reported in the literature. Objective: This study aimed to develop and validate an agar diffusion method for quantification of thiamphenicol in soft capsules. Methods: The assay was based on the inhibitory effect of thiamphenicol on the following: a strain of Kocuria rhizophila ATCC 9341, used as the test microorganism, Antibiotic 1culture medium, phosphate buffer pH 6, 0, inoculum at a concentration of 1%, as well as standard and sample solutions at the concentrations of 20.0, 40.0 and 80.0 μg mL-1. Results: The method validation yielded good results for the parameters of linearity, precision, accuracy, robustness and selectivity. The experimental statistic results were analyzed using analysis of variance (ANOVA). The method was found to be linear (r2 = 0.9992) in the range of 20-80 μg mL-1, precise (inter-assay R.S.D = 0.09%), accurate (R.S.D. = 4.65%), specific, and robust. Conclusion: The results demonstrated the validity of the proposed bioassay, which allows for reliable quantification of thiamphenicol in a pharmaceutical sample. An alternative methodology for thiamphenicol determination in routine quality control has been reported herein.

2008 ◽  
Vol 91 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Cleber A Schmidt ◽  
Marcelly Carazzo ◽  
Luciane V Laporta ◽  
Celso F Bittencourt ◽  
Marcos R Santos ◽  
...  

Abstract Ceftazidime (CFZ) is a broad spectrum parenterallactam antibiotic of the cephalosporin family. This paper reports the development and validation of an agar diffusion microbiological assay using the cylinder-plate method for determination of CFZ in powder for injection. The validation carried out yielded good results in terms of linearity, precision, accuracy, selectivity, and robustness. The assay is based on the inhibitory effect of CFZ upon the strain of Pseudomonas aeruginosa ATCC 27853 used as the test microorganism. The results of the assays were treated statistically by analysis of variance and were found to be linear (correlation coefficient = 0.999998) in the selected range of 8.032.0 g/mL; precise [repeatability: relative standard deviation (RSD) = 1.11; intermediate precision: between-day RSD = 1.37 and between-analyst RSD = 1.41]; and accurate. The selectivity of the bioassay was evaluated by analysis of degraded samples at 50C, and the results were compared with a pharmacopeial liquid chromatographic method at the time 0, 24, and 48 h. The results demonstrated the validity of the proposed bioassay, which allows reliable quantitation of CFZ in pharmaceutical samples and can be used as a useful alternative methodology for CFZ analysis in routine quality control.


2013 ◽  
Vol 49 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Flávia Angélica Másquio Fiorentino ◽  
Marcos Antonio Corrêa ◽  
Hérida Regina Nunes Salgado

Chlorhexidine (CHX) is a broad-spectrum antiseptic that is used in many topical pharmaceutical formulations. Because there is no official microbiological assay reported in the literature that is used to quantify CHX, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method for the dosage of chlorhexidine digluconate (CHX-D) in an aqueous solution. The assay is based on the inhibitory effect of CHX-D upon the strain of Staphylococcus aureus ATCC 25923, which is used as the test microorganism. The design 3x3 parallel-line model was used. The results were treated statistically by analysis of variance (ANOVA), and they were excellent in terms of linearity (r = 0.9999), presenting a significant regression between the zone diameter of growth inhibition and the logarithm of the concentration within the range of 0.5 to 4.5%. The results obtained were precise, having relative standard deviations (RSD) for intra-day and inter-day precision of 2.03% and 2.94%, respectively. The accuracy was 99.03%. The method proved to be very useful and appropriate for the microbiological dosage of CHX-D in pharmaceutical formulations; it might also be used for routine drug analysis during quality control in pharmaceutical industries.


2006 ◽  
Vol 89 (5) ◽  
pp. 1367-1372 ◽  
Author(s):  
Marinês J Souza ◽  
Rosecler R Kulmann ◽  
LucÊlia M Silva ◽  
Daniele R Nogueira ◽  
Estevan S Zimmermann ◽  
...  

Abstract Cefepime is a new parenteral cephalosporin that has been described as a fourth-generation, broad-spectrum antibiotic. This paper reports the development and in-house validation of an agar diffusion bioassay using a cylinder-plate method for the determination of cefepime in powder for injection. The validation performed yielded good results in terms of linearity, precision, accuracy, and robustness. The assay is based on the inhibitory effect of cefepime upon the strain of Micrococcus luteus ATCC 10240 used as the test microorganism. The results of assays were treated statistically by analysis of variance (ANOVA) and were found to be linear (r = 0.99993) in the selected range of 8.032.0 g/mL; precise [repeatability: relative standard deviation (RSD) = 1.39%, intermediate precision: between-day RSD = 1.77%, and between-analyst RSD = 1.97%] and accurate. Comparison of bioassay and liquid chromatography by ANOVA showed no significant difference between methodologies. The results demonstrated the validity of the proposed bioassay, which is a simple and useful alternative methodology for cefepime determination in routine quality control.


Author(s):  
Kuntal Mukherjee ◽  
S. T. Narenderan ◽  
B. Babu ◽  
Survi Mishra ◽  
S. N. Meyyanathan

A simple, sensitive and rapid high performance liquid chromatographic method has been developed for the determination of Propofol. The main focus of the method was to determine Propofol in solution form as well as in marketed formulation. Chromatographic separation was achieved on Inertsil ODS-3V column (250mm x 4.6mm; 5µm) with a mobile phase consisting of methanol: water (85:15), with a flow rate of 1.0ml/min (UV detection at 270nm). Linearity was observed over the concentration range of 10-110µg/ml with a regression equation y=88048x + 44524 and having a regression value (R2) of 0.999. The LOD and LOQ values found to be 10ng and 100ng, respectively. No changes found in ruggedness and robustness studies. The percentage of recovery was found to be 95.25% to 101.81%. Validation studies revealed that the method was specific, accurate, precise, reliable, robust, reproducible and suitable for the quantitative analysis in its pharmaceutical formulations.


2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.


2016 ◽  
Vol 52 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Marcos Vinícius de Moura Ribeiro ◽  
Ingrid da Silva Melo ◽  
Francisco das Chagas da Costa Lopes ◽  
Graziella Ciaramella Moita

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Bernard Oluwapelumi Oluboyo ◽  
Maihankali J Charles ◽  
Richard Akele ◽  
Funmilayo Akinseye ◽  
Adeola Oluboyo

Objetive: Manufacturers of toothpastes claim that their products are active against oral microbiome capable of causing tooth decay. The objective of this study was to investigate the manufacturers’ claim using some of the toothpaste products sold in Ado-Ekiti, Nigeria. Material and methods: The antibacterial potentials of five commercialized toothpaste products (designated sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, sodium fluoride-eugenol, sodium fluoridesodium laurylsulfate and sodium fluoridepotassium nitrate) were tested against six oral isolates of dental caries and periodontal origin – Staphylococcus aureus, Streptococcus mitis, Streptococcus salivarius, Streptococcus pyogenes and Pseudomonas aeruginosa. The antimicrobial potentials were evaluated using modified agar well diffusion method. Various dilutions of the toothpaste products from 1:1 to 1:16 were tested against each test microorganism. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the toothpastes were determined. Results: sodium fluoride-zinc sulphate, benzyl alcoholsodium fluorophosphate and sodium fluorideeugenol toothpastes showed inhibitory effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed no inhibitory effect on the organisms except S. pyogenes. Only sodium fluoride-potassium nitrate toothpaste inhibited E. coli while none of the toothpastes inhibited P. aeruginosa. The MIC and MBC of sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed bacteriostatic and bactericidal effects on the organisms. Sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed comparable effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-eugenol toothpaste was strongest against S. mitis, benzyl alcoholsodium fluorophosphates toothpaste was strongest against S. pyogenes, sodium fluoridezinc sulphate toothpaste was strongest against S. salivarius and only sodium fluoride-potassium nitrate toothpaste inhibited E. coli. Conclusion: The manufacturer’s claim is upheld by this study for sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate and sodium fluoride-eugenol toothpastes. However, sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed limited inhibitory potentials.     Keywords Antibacterial; Caries; Oral isolates; Periodontitis; Toothpastes.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


Sign in / Sign up

Export Citation Format

Share Document