UPLC-MS/MS determination of chlorogenic acid, hyperoside and astragalin in plasma and its pharmacokinetic application in liver injury rats

2020 ◽  
Vol 16 ◽  
Author(s):  
Ying Zhang ◽  
Shu-ya Xu ◽  
Zhe Jia ◽  
Ting Han ◽  
Meng-nan Liu ◽  
...  

Background: Cuscutae semen (CS) is reported to show hepatoprotective effect. Chlorogenic acid, hyperoside and astragalin are three major biologically active components from CS. Objective: A sensitive method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated to quantify the three components in rat plasma and was succssfully used to pharmacokinetic study in liver injury rats. Method: Plasma samples were prepared with protein precipitation by acetonitrile. Chromatographic separation was achieved on ACQUITY-XBridge BEH C18 column with a gradient elution using the mobile phase containing 0.05% formic acid in water (A) and acetonitrile (B). The three components were quantified using electrospray ionization (ESI) source in the negative multiple reaction monitoring (MRM) mode. Results and Discussion: Calibration curves of each analyte showed a good linearity with correlation coefficients over 0.99. Accuracies (RE%) and precisions (RSD%) were within 15%. The method was stable. Recovery of the target compounds in plasma samples ranged from 87.00% to 102.29%. No matrix effect was found to influence the quantitative method. Conclusion: The UPLC-MS/MS method was met the acceptance criteria and successfully applied to simultaneous determination of chlorogenic acid, hyperoside and astragalin in rat plasma for the first time. It is suitable for pharmacokinetic application in liver injury rats. It provides the foundation for the further development and utilization for the hepatoprotective effect of cuscutae semen.

Author(s):  
Shixing Zhu ◽  
Jiayuan Zhang ◽  
Zhihua Lv ◽  
Mingming Yu

Background: Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. Objective: In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. Methods: Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2 mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. Results: Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500 ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. Conclusion: The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.


2021 ◽  
Author(s):  
Pengpeng Zhang ◽  
Liu Shuai ◽  
Shuang Yang ◽  
Yuanhong Wang ◽  
Ting-Fu Jiang ◽  
...  

A simple and sensitive method for the simultaneous determination of chito-oligosaccharide (COS) with degrees of polymerization(DPs)from 2 to 7 was developed and used for COS quantification in rat plasma. Samples...


2021 ◽  
Vol 22 ◽  
Author(s):  
Jian Le ◽  
Yuehua Liao ◽  
Shengni Li ◽  
Xiujuan Chen ◽  
Zhanying Hong

Background: Pantoprazole and atorvastatin are often used jointly in the clinic. The drug-drug interaction of pantoprazole and atorvastatin is worthy of being investigated. Objective: A highly rapid, sensitive, and selective LC-MS/MS method was developed for simultaneous quantification of pantoprazole and atorvastatin in rat plasma. Methods: Omeprazole and atorvastatin-d5 were used as the internal standards (ISs) of pantoprazole and atorvastatin, respectively. Simple protein precipitation was used to extract analytes from 50.0 μL plasma samples. Results: The chromatographic separation was achieved on a C18 column and the total chromatographic run time was 3.2 min. Acquisition of mass spectrometric data was performed on a triple-quadrupole mass spectrometer in multiple- reaction-monitoring (MRM) mode with an ESI source using the transition m/z 384→ 200 for pantoprazole and m/z 559.4→ 440.2 for atorvastatin, respectively. The method was validated over the concentration range of 20.0 ∼ 5000 ng/mL for pantoprazole and 1.00 ∼ 250 ng/mL for atorvastatin. All the validation results, including linearity, specificity, precision, accuracy, extraction recovery, matrix effect, and stability, met the acceptance criteria as per FDA guidelines. Conclusion: This method was successfully applied to a pharmacokinetic interaction study in Wistar rats. The results revealed significant evidence for the drug-drug interaction between pantoprazole and atorvastatin.


2020 ◽  
Vol 12 (4) ◽  
pp. 431-438 ◽  
Author(s):  
David Herman ◽  
Alzbeta Dlabkova ◽  
Lenka Cechova ◽  
Nela Vanova ◽  
Jan Misik ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jiayuan Shen ◽  
Juan Wei ◽  
Li Li ◽  
Huizi Ouyang ◽  
Yanxu Chang ◽  
...  

A sensitive and reliable HPLC-MS/MS method has been developed and validated for simultaneous determination of eleven bioactive compounds (rhein, emodin, stilbene glycoside, liquiritin, ononin, verbascoside, gallic acid, schisandrin, liquiritigenin, glycyrrhizic acid, and isoliquiritigenin) in rat plasma after oral administration of Tongmai Yangxin Pill. The collected plasma samples were prepared by liquid-liquid extraction with ethyl acetate after acidification. Eleven compounds were separated on a CORTECS™ C18 column with mobile phases consisting of 0.1% formic acid in deionized water and acetonitrile. The flow rate was 0.3 mL/min. The detection was performed on a tandem mass system with an electrospray ionization (ESI) source in both positive and negative ionization using multiple-reaction monitoring (MRM) mode. The calibration curves were linear over the range of 8-2000 ng/mL for glycyrrhizic acid; 4-1000 ng/mL for liquiritin; 0.8-200 ng/mL for emodin, gallic acid, ononin, schisandrin, and stilbene glycoside; 0.4-100 ng/mL for isoliquiritigenin, liquiritigenin, rhein, and verbascoside, respectively. The intra- and interday precision of the analytes were less than 9.3% and 8.5%. The intra- and interday accuracy were in the range of -14.0% to 10.3% and -6.5% to 9.6%. Meanwhile, the extraction recovery of the analytes in plasma samples ranged from 85.2% to 109.1% and matrix effect from 89.2% to 113.4%. The developed method was successfully applied to the pharmacokinetics of eleven bioactive compounds in rat plasma after oral administration of Tongmai Yangxin Pill prescription.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Li ◽  
Yang Li ◽  
Jin Li ◽  
Rui Liu ◽  
Jia Hao ◽  
...  

A sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine the toxic and other active components including isovanillin, scopoletin, periplocin, periplogenin, and periplocymarin after oral administration of cortex periplocae extract to rats. Plasma samples were prepared by protein precipitation with methanol. All compounds were separated on a C18 column with gradient elution using acetonitrile and formic acid aqueous solution (0.1%, v/v) as the mobile phase at a flow rate of 0.3 mL/min. The detection of all compounds was accomplished by multiple-reaction monitoring (MRM) in the positive electrospray ionization mode. The LC-MS/MS method exhibited good linearity for five analytes. The lower limit of quantification (LLOQ) was 0.48 ng/mL for scopoletin, periplogenin, and periplocymarin; 2.4 ng/mL for isovanillin and periplocin. The extraction recoveries of all compounds were more than 90% and the RSDs were below 10%. It was found that the absorption of scopoletin and periplocin was rapid in vivo after oral administration of cortex periplocae extract. Furthermore, periplocymarin possessed abundant plasma exposure. The results demonstrated that the validated method was efficiently applied for the pharmacokinetic studies of isovanillin, scopoletin, periplocin, periplogenin, and periplocymarin after oral administration of cortex periplocae extract.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Renjie Xu ◽  
Mengyue Wang ◽  
Ying Peng ◽  
Xiaobo Li

Isoalantolactone and alantolactone are two major active ingredients that are present in many medicinal plants. In this study, a sensitive and rapid ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for determination of the two compounds in rat plasma, separately. In this method, an electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring (MRM) was selected for quantification using target fragment ions 233.2→187.1 for isoalantolactone (alantolactone) and 245.1→189.1 for internal standard (IS). Retention time of the lactones and IS was within 3.0 min. Further calibration suggested a linear regression can be calculated within 2.5–500 ng/mL for isoalantolactone and 4–500 ng/mL for alantolactone. This method was used to compare the pharmacokinetic characteristics of isoalantolactone and alantolactone at a single dose of 5 mg/kg into male Sprague-Dawley rats by intravenous administration separately. The levels oft1/2, Kel, CL,Cmax, and AUC were significantly increased in the alantolactone group compared to isoalantolactone. These results suggested that isoalantolactone was distributed and eliminated more rapidly than alantolactone in rats when administered, respectively.


2003 ◽  
Vol 17 (2-3) ◽  
pp. 511-519 ◽  
Author(s):  
Gangfeng Wang ◽  
Yunsheng Hsieh ◽  
K.-C. Cheng ◽  
Kwokei Ng ◽  
Walter A. Korfmacher

A high-throughput semi-automated procedure for simultaneously stability evaluation of multiple compounds in plasma using direct single column high-performance liquid chromatography (HPLC) combined with tandem mass spectrometry (MS/MS) was developed to eliminate the laborious procedures that are traditionally used for stability studies. Untreated human, monkey, mouse and rat plasma samples containing ten drug components were directly injected into a mixed-functional column that provided both protein removal and chromatographic functionality. Ten test compounds were simultaneously assayed using a tandem mass spectrometer in the positive ion mode using multiple reaction monitoring (MRM). Plasma samples containing ten test compounds were placed in a thermostatic autosampler and then sequentially monitored in one analytical procedure. The time between each injection was set about 7 minutes. The peak responses of the test compounds in individual plasma samples were repeatedly determined every 28 minutes. Drug stability in plasma was indicated by the change of the mass chromatographic peak areas for the test compounds and was observed to be a function of animal species, incubation time and incubation temperature. The potential for matrix ionization suppression on the direct single column HPLC-MS/MS system was also investigated using the post-column infusion technique. The proposed cassette assay procedure provides an analytical throughput ten times greater than the single component approach for the evaluation of drug stability in plasma without compromising data quality.


Sign in / Sign up

Export Citation Format

Share Document