Preparation and Characterization of Calcium Carbonate Reinforced Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites

2020 ◽  
Vol 16 ◽  
Author(s):  
Semra Kirboga ◽  
Mualla Öner ◽  
Süleyman Deveci

Background: The objective of this work was to develop biopolymer/calcium carbonate biocomposites with enhanced properties, relative to the neat polymer, by using low-cost filler calcium carbonate (CaCO3). To this end, we selected as matrices Poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), which has attracted the most considerable interest among the biopolymer in industry. Methods: Novel biodegradable PHBV/CaCO3 composites with 0.1-1 wt% of CaCO3 content were manufactured by melt extrusion. The effect of the CaCO3 on the thermal, barrier and dynamic mechanical properties of the PHBV was comprehensively investigated by SEM, XRD, FTIR, TGA, DSC, and DMA. The water and oxygen barrier properties of the biocomposites were also measured. Results: DSC and XRD analysis showed that CaCO3 served as a nucleating agent, promoting crystallinity and crystal size. The addition of CaCO3 particles has a small effect on the lamellae thickness and distribution. DMA measurements showed that considerable improvements in storage modulus and viscose damping by incorporating CaCO3 particles. The storage modulus of the PHBV at 20°C in the DMA was increased up to 76% and loss modulus was increased up to 175% when composite prepared 0.1wt% coated CaCO3 particle. Water vapor and oxygen permeability were measured to study the effect of particles on the barrier properties of composite samples. Biocomposites exhibited smaller oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) due to the increase of crystallinity and tortuosity of the composite samples. Conclusion: The results of this study have demonstrated that properties of biocomposites prepared by using low-cost commercially available filler are greatly improved to obtain the high-performance composites.

Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 899-905 ◽  
Author(s):  
Eva-Lena Hult ◽  
Klaus Koivu ◽  
Janne Asikkala ◽  
Jarmo Ropponen ◽  
Pauli Wrigstedt ◽  
...  

Abstract Lignin, esterified with palmitic and lauric acid chloride, has been studied for the application as coating on fiber-based packaging material. The aim was to improve the barrier properties against water vapor and oxygen of paperboard. The esterification was followed by Fourier transform infrared spectroscopy, 31P nuclear magnetic resonance spectroscopy, and gel permeation chromatography measurements. The lignin esters were applied on paperboard and formed a continuous film. The moisture barrier property of the coated paperboards was characterized by the water vapor transmission rate (WVTR). A significant decrease in WVTR was observed, for example, 40 g m-2 (for 24 h) for a paperboard coated with 10.4 g m-2 hardwood kraft lignin palmitate. The contact angle of water on the lignin ester coatings was high and stable. For all paperboard samples coated with lignin esters, a significant decrease in oxygen transmission rate was observed. Accordingly, lignin palmitate and laurate have a high potential as a barrier materials in packaging applications.


2012 ◽  
Vol 200 ◽  
pp. 180-185 ◽  
Author(s):  
Zhi Qiang Fang ◽  
Gang Chen ◽  
Yu Sha Liu ◽  
Xin Sheng Chai

Chitosan solution was applied to coated ivory board as a barrier material, and the surface microstructure, oxygen resistance and water vapor permeability of chitosan-coated paper under different coating weight were studied. According to the images of scanning electron microscope(SEM) and Atomic force microscope(AFM), the coated ivory board surface has a smooth contour without pores and cracks after coating with chitosan. Increasing in coating hold-out of chitosan, the smoothness and the oxygen barrier properties of coated paper were improved considerably, but no improvement on water vapor resistance. An Oxygen transmission rate (OTR) of 119.0 cm3/m2•24h•0.1MPa was obtained when the coating weight of chitosan was 3.96 g/m2. Single-layer and double-layer techniques were used to coat coated ivory paper with chitosan; it was found that the OTR of paper, obtaining by double-layer coating technique, was lower than that of single-layer paper at similar coating weight. For the purpose of reducing water vapor transmission rate (WVTR) of chitosan-coated paper, Poly(vinyldene chloride)(PVDC) was applied on the chitosan-coated paper. Water vapor and oxygen barrier properties were enhanced as the coating weight of PVDC increased from 1.05 g/m2to 7.40 g/m2. While the chitosan and PVDC was coated on coated ivory paper through bi-layer technique for 1.96 g/m2and 7.40g/m2, respectively, the WVTR and OTR of paper decreased by 66.3% and 98.0% separately, compared to that of the chitosan-coated paper for 1.96g/m2.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2097
Author(s):  
Qian Wen ◽  
Ao Tang ◽  
Chengliang Chen ◽  
Yiwu Liu ◽  
Chunguang Xiao ◽  
...  

This study designed and synthesised a meta-amide-substituted dianiline monomer (m-DABA) as a stereoisomer of DABA, a previously investigated para-amide-substituted dianiline monomer. This new monomer was polymerised with pyromellitic dianhydride (PMDA) to prepare a polyimide film (m-DABPI) in a process similar to that employed in a previous study. The relationship between the substitution positions on the monomer and the gas barrier properties of the polyimide film was investigated via molecular simulation, wide-angle X-ray diffraction (WXRD), and positron annihilation lifetime spectroscopy (PALS) to gain deeper insights into the gas barrier mechanism. The results showed that compared with the para-substituted DABPI, the m-DABPI exhibited better gas barrier properties, with a water vapour transmission rate (WVTR) and an oxygen transmission rate (OTR) as low as 2.8 g·m−2·d−1 and 3.3 cm3·m−2·d−1, respectively. This was because the meta-linked polyimide molecular chains were more tightly packed, leading to a smaller free volume and lower molecular chain mobility. These properties are not conducive to the permeation of small molecules into the film; thus, the gas barrier properties were improved. The findings have significant implications for the structural design of high-barrier materials and could promote the development of flexible display technology.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2382
Author(s):  
Dong Min Seong ◽  
Heysun Lee ◽  
Jungbae Kim ◽  
Jeong Ho Chang

This work reports the preparation of a ceramic hybrid composite film with illite and polyethylene (illite-PE), and the evaluation of the freshness-maintaining properties such as oxygen transmission rate (OTR), water vapor transmission rate (WVTR), tensile strength, and in vitro cytotoxicity. The particle size of the illite material was controlled to within 10 μm. The illite-PE masterbatch and film were prepared using a twin-screw extruder and a blown film maker, respectively. The dispersity and contents of illite material in each masterbatch and composite film were analyzed using a scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). In addition, the OTR and WVTR of the illite-PE composite film were 8315 mL/m2·day, and 13.271 g/m2·day, respectively. The in vitro cytotoxicity of the illite-PE composite film was evaluated using L929 cells, and showed a cell viability of more than 92%. Furthermore, the freshness-maintaining property was tested for a packaging application with bananas; it was found to be about 90%, as indicated by changes in the color of the banana peel, after 12 days.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


2012 ◽  
Vol 608-609 ◽  
pp. 1351-1353
Author(s):  
Wen Ming Ren ◽  
Pei Fang Cheng ◽  
Xue Feng Liu

In order to improve the practical performance of common Cellophane as packaging material, PET/PT composite film were prepared by means of Dry Lamination, and the influence of temperature on water vapor permeation of composite films was investigated at the range of 20-50°C at 50% relative humidity. The results showed that the moisture barrier properties of common Cellophane were improved obviously by means of coating on the PET films and the water vapor transmission rate of composite films was increased with temperature increasing in the range from 20°C to 50°C,the relationship between water vapor transmission rate of the composite films and the temperature followed an exponential grow curve [y=1.3441exp (0.0597x)], correlation coefficient R is 0.9957.


2011 ◽  
Vol 295-297 ◽  
pp. 1600-1605
Author(s):  
Gai Mei Zhang ◽  
Qiang Chen ◽  
Cun Fu He ◽  
Shou Ye Zhang

The oxygen transmission rate (OTR) of SiOx coated polyethylene terephthalate (PET) and biaxially oriented polypropylene (BOPP) affected by fine defects is discussed in this paper. With an ultrasonic AFM (UAFM), which is an advantageous to distinguishing tiny defects on/ in the deposited films, it is found that the OTR of the coated films is relevant to the morphology scanned by UAFM. Herein SiOx layers with a thickness in the order of nano-scale were fabricated in 13.56 MHz-radio frequency (RF) -plasma-enhanced chemical vapor deposition (PECVD). The monomer for the coating fabrication is hexamethyldisiloxane (HMDSO). Fourier transform inferred (FTIR) spectra of the deposited coating with a strong peak at 1062 cm-1, corresponding to Si-O-Si stretching vibration, confirm the formation of SiOx coatings through PECVD. The higher OTR value of SiOx coated PET is consistence with defects on film surface and in the subsurface of coatings through UAFM. It obtains that the OTR value of the defect free SiOx coated film was reduced by ca. 89% compared with the defect existence SiOx coated PET.


2018 ◽  
Vol 16 (2) ◽  
pp. 181 ◽  
Author(s):  
Kendri Wahyuningsih ◽  
Evi Savitri Iriani ◽  
Farah Fahma

 Cellulose from pineapple leaf fibers as one of the natural polymer which has biodegradable property in a nanometer’s scale, can be formed as a filler in composite of Poly(vinyl) Alcohol/PVA is expected to increase the physical, thermal, and barrier properties of composite films similar to conventional plastic. The aim of this study was to examine the effect of fibrillation of cellulose fibers from pineapple leaf fibers using a combined technique of chemical-mechanical treatments, to investigate the reinforcing effect of concentration of nanocellulose fibrils in the polyvinyl alcohol (PVA) matrix on physical properties, thermal properties, water vapor transmission rate, light transmittance and morphological with and without addition of glycerol. Nanocellulose was made from cellulose of pineapple leaf fiber using wet milling (Ultra Fine Grinder). The composite film production was carried out by using casting solution method by mixing PVA solution with nanocellulose (10-50%) and glycerol (0-1%). The characterization of film covered physical properties (thickness, moisture content and density), thermal properties, permeability (WVTR), light transmittance, morphology, and crystallinity. Nanocellulose from pineapple leaf fibers was produced by Ultra Fine Grinder shows that the size reduction process was accurate. Nanocellulose addition on PVA composite film was affected to increasing the physical, thermal, and barrier properties. Meanwhile, decreasing the percentage of composite film transmittance, thus the transparency decrease (opaque). Water vapor transmission rate (WVTR) the film was increased with increasing glycerol concentration, but the physical and thermal properties was decreased.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Ares ◽  
María J Abad ◽  
Luis Barral ◽  
Sandra García-Garabal

AbstractThe aim of this work is to investigate the properties of the PP/EVOH films for their potential use in the packaging industry. Besides, the barrier properties, the mechanical parameters and the morphology of the PP/EVOH films have been studied as function of their composition and the processing technique used for their manufacture. In these applications, the package is frequently in contact with humidity environments and for this, it is necessary to know how environments with different humidity contents, affect the O2 permeability of the polymer material. For these reasons, the influence of the moisture in the values of permeability was evaluated too. The data showed that the oxygen transmission rate (O2TR) decreased with the amount of EVOH, and if the copolymer mass is maintained constant, the O2TR diminished with the quantity of the ionomer in the compositions. Besides, the films obtained by extrusion and following unidirectional stretching, presented better barrier properties to the oxygen molecules than the compression moulded films. When the ionomer is added to the compositions the permeability is reduced even for the films maintained in wet atmosphere. The micrographs obtained by SEM showed that the films have a biphasic structure, where the EVOH particles are dispersed in the PP matrix.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1424
Author(s):  
Juliana Villasante ◽  
Anna Martin-Lujano ◽  
María Pilar Almajano

Phenolic compounds that come from natural products are a good option for minimizing lipid oxidation. It should be noted that these are not only introduced directly into the food, but also incorporated into edible biofilms. In contact with food, they extend its useful life by avoiding contact with other surface and preventing deterioration air, one of the main objectives. In particular, gelatin is a biopolymer that has a great potential due to its abundance, low cost and good film-forming capacity. The aim of this study has been to design and analyse gelatin films that incorporate bioactive compounds that come from the walnut and a by-product, the walnut shell. The results showed that mechanical and water vapor barrier properties of the developed films varied depending on the concentration of the walnut, shell and synthetic antioxidant. With increasing walnut concentration (15%) the permeability to water vapor (0.414 g·mm/m2·day·Pascal, g·mm/m2·day·Pa) was significantly lower than the control (5.0368 g·mm/m2·day·Pa). Furthermore, in the new films the elongation at the break and Young’s modulus decrease by six times with respect to the control. Films with pure gelatin cannot act as an antioxidant shield to prevent food oxidation, but adding pecan walnut (15% concentration) presents 30% inhibition of the DPPH stable radical. Furthermore, in the DSC, the addition of walnut (15 and 9% concentrations), showed the formation of big crystals; which could improve the thermal stability of gelatin films. The use of new gelatin films has shown good protection against the oxidation of beef patties, increasing the useful lifetime up to nine days, compared to the control (3–4 days), which opens up a big field to the commercialization of meat products with lower quantities of synthetic products.


Sign in / Sign up

Export Citation Format

Share Document