Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging

Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 899-905 ◽  
Author(s):  
Eva-Lena Hult ◽  
Klaus Koivu ◽  
Janne Asikkala ◽  
Jarmo Ropponen ◽  
Pauli Wrigstedt ◽  
...  

Abstract Lignin, esterified with palmitic and lauric acid chloride, has been studied for the application as coating on fiber-based packaging material. The aim was to improve the barrier properties against water vapor and oxygen of paperboard. The esterification was followed by Fourier transform infrared spectroscopy, 31P nuclear magnetic resonance spectroscopy, and gel permeation chromatography measurements. The lignin esters were applied on paperboard and formed a continuous film. The moisture barrier property of the coated paperboards was characterized by the water vapor transmission rate (WVTR). A significant decrease in WVTR was observed, for example, 40 g m-2 (for 24 h) for a paperboard coated with 10.4 g m-2 hardwood kraft lignin palmitate. The contact angle of water on the lignin ester coatings was high and stable. For all paperboard samples coated with lignin esters, a significant decrease in oxygen transmission rate was observed. Accordingly, lignin palmitate and laurate have a high potential as a barrier materials in packaging applications.

2012 ◽  
Vol 200 ◽  
pp. 180-185 ◽  
Author(s):  
Zhi Qiang Fang ◽  
Gang Chen ◽  
Yu Sha Liu ◽  
Xin Sheng Chai

Chitosan solution was applied to coated ivory board as a barrier material, and the surface microstructure, oxygen resistance and water vapor permeability of chitosan-coated paper under different coating weight were studied. According to the images of scanning electron microscope(SEM) and Atomic force microscope(AFM), the coated ivory board surface has a smooth contour without pores and cracks after coating with chitosan. Increasing in coating hold-out of chitosan, the smoothness and the oxygen barrier properties of coated paper were improved considerably, but no improvement on water vapor resistance. An Oxygen transmission rate (OTR) of 119.0 cm3/m2•24h•0.1MPa was obtained when the coating weight of chitosan was 3.96 g/m2. Single-layer and double-layer techniques were used to coat coated ivory paper with chitosan; it was found that the OTR of paper, obtaining by double-layer coating technique, was lower than that of single-layer paper at similar coating weight. For the purpose of reducing water vapor transmission rate (WVTR) of chitosan-coated paper, Poly(vinyldene chloride)(PVDC) was applied on the chitosan-coated paper. Water vapor and oxygen barrier properties were enhanced as the coating weight of PVDC increased from 1.05 g/m2to 7.40 g/m2. While the chitosan and PVDC was coated on coated ivory paper through bi-layer technique for 1.96 g/m2and 7.40g/m2, respectively, the WVTR and OTR of paper decreased by 66.3% and 98.0% separately, compared to that of the chitosan-coated paper for 1.96g/m2.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2097
Author(s):  
Qian Wen ◽  
Ao Tang ◽  
Chengliang Chen ◽  
Yiwu Liu ◽  
Chunguang Xiao ◽  
...  

This study designed and synthesised a meta-amide-substituted dianiline monomer (m-DABA) as a stereoisomer of DABA, a previously investigated para-amide-substituted dianiline monomer. This new monomer was polymerised with pyromellitic dianhydride (PMDA) to prepare a polyimide film (m-DABPI) in a process similar to that employed in a previous study. The relationship between the substitution positions on the monomer and the gas barrier properties of the polyimide film was investigated via molecular simulation, wide-angle X-ray diffraction (WXRD), and positron annihilation lifetime spectroscopy (PALS) to gain deeper insights into the gas barrier mechanism. The results showed that compared with the para-substituted DABPI, the m-DABPI exhibited better gas barrier properties, with a water vapour transmission rate (WVTR) and an oxygen transmission rate (OTR) as low as 2.8 g·m−2·d−1 and 3.3 cm3·m−2·d−1, respectively. This was because the meta-linked polyimide molecular chains were more tightly packed, leading to a smaller free volume and lower molecular chain mobility. These properties are not conducive to the permeation of small molecules into the film; thus, the gas barrier properties were improved. The findings have significant implications for the structural design of high-barrier materials and could promote the development of flexible display technology.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1082 ◽  
Author(s):  
Dongmei Han ◽  
Yiqing Luo ◽  
Qing Ju ◽  
Xujing Xiao ◽  
Min Xiao ◽  
...  

Nanobrick wall hybrid coating with super oxygen barrier properties were fabricated on polyethylene terephthalate (PET) film using a quadlayer (QL) assembly of polyelectrolytes and nanoplateles. A quadlayer assembly consists of three repeat units of polyacrylic acid (PAA), poly (dimethyl diallyl ammonium chloride) (PDDA) and layered α-zirconium phosphate (α-ZrP). PDDA with positive charges can assemble alternatively with both α-ZrP and PAA with negative charges to form nanobrick wall architectures on the surface of PET film via the electrostatic interaction. The lamellar structure of α-ZrP platelets and the dense QL assembly coating can greatly reduce the oxygen transmission rate (OTR) of PET film. Compared to pristine PET film, the OTR of PET (QL)19 is reduced from 57 to 0.87 cc/m2/day. Moreover, even with 19 QLs coating, PET (QL)19 composite film is still with an optical transparency higher than 90% and a haze lower than 10%. Therefore, the transparent PET (QL)n composite films with super oxygen barrier properties show great potential application in food packaging and flexible electronic packaging.


2020 ◽  
pp. 875608792096353
Author(s):  
Changfeng Ge ◽  
Suraj Singh Verma ◽  
Jack Burruto ◽  
Nazar Ribalco ◽  
Janice Ong ◽  
...  

Flex barrier and optical density (OD) are two unique properties for metallized films and aluminum foil. This study investigated the effect of flexing on barrier properties of a laminate comprising metallized films and aluminum foil, as well as OD and adhesive lamination process on the overall multilayer laminate performance. Three (3) barrier layers, namely aluminum foil, metallized polyethylene terephthalate (met OPET) film with a high OD, and standard metallized PET film(met OPET), were laminated with the same printing layer OPET and sealing layer linear low density polyethylene (LLDPE), into OPET/adhesive/foil/adhesive/LLDPE and OPET/adhesive/met OPET/adhesive/LLDPE structures. The oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) were measured before and after flexing. The aluminum foil centered laminate had an excellent oxygen barrier after the 20-cycle flexing test and failed to retain its oxygen barrier after the 270-cycle flexing. Compared to the aluminum foil centered laminate, the metallized film centered laminates were less affected by the flexing on the oxygen barrier. For all laminates, the water vapor barrier was less severely affected by flexing than the oxygen barrier. This study suggests that the ASTMF392 Gelbo D (20- cycle flexing) can determine if aluminum foil and metallized film centered laminates are resistant to flex-formed pinhole failures. A higher OD, a thicker film thickness and lamination process improved laminate’s actual barrier, resulting in lower measured transmission rates versus that predicted using Henry's solubility law and Fick's diffusion law. The laminate’s water vapor transmission rate is 55–74% lower than predicted. The oxygen transmission rate is 15–31% lower than predicted.


2020 ◽  
Vol 1 (3) ◽  
pp. 198-208
Author(s):  
Ali H. Tayeb ◽  
Mehdi Tajvidi ◽  
Douglas Bousfield

Films formed from cellulose nanofibrils (CNFs) are known to be good barrier materials against oxygen, but they lose this feature once placed in humid conditions. To tackle this issue, we applied an optimized pressing condition under elevated temperature to increase the films’ density and improve their barrier performance. Furthermore, a water barrier coating was employed on the surfaces to control the moisture uptake at high relative humidity (RH). Neat self-standing films of CNF with the basis weight of 70 g/m2 were made through a filtration technique and pressed for 1 hour at 130 °C. The resulting nanostructures were covered on both sides using a water-borne barrier layer. Hot-pressing resulted in a significant reduction in oxygen transmission rate (OTR) values, from 516.7 to 3.6 (cm3/(m2·day)) and to some degree, helped preserve the reduced oxygen transmission at high relative humidity. Introducing 35 g/m2 of latex coating layer on both sides limited the films’ swelling at 90% RH for about 4 h and maintained the OTR at the same level. A finite element model was used to predict the dynamic uptake of water into the systems. The model was found to over-predict the rate of water uptake for uncoated samples but gave the correct order of magnitude results for samples that were coated. The obtained data confirmed the positive effect of hot-pressing combined with coating to produce a film with low oxygen transmission rate and potential to maintain its oxygen barrier feature at high relative humidity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Semra Kirboga ◽  
Mualla Öner ◽  
Süleyman Deveci

Background: The objective of this work was to develop biopolymer/calcium carbonate biocomposites with enhanced properties, relative to the neat polymer, by using low-cost filler calcium carbonate (CaCO3). To this end, we selected as matrices Poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), which has attracted the most considerable interest among the biopolymer in industry. Methods: Novel biodegradable PHBV/CaCO3 composites with 0.1-1 wt% of CaCO3 content were manufactured by melt extrusion. The effect of the CaCO3 on the thermal, barrier and dynamic mechanical properties of the PHBV was comprehensively investigated by SEM, XRD, FTIR, TGA, DSC, and DMA. The water and oxygen barrier properties of the biocomposites were also measured. Results: DSC and XRD analysis showed that CaCO3 served as a nucleating agent, promoting crystallinity and crystal size. The addition of CaCO3 particles has a small effect on the lamellae thickness and distribution. DMA measurements showed that considerable improvements in storage modulus and viscose damping by incorporating CaCO3 particles. The storage modulus of the PHBV at 20°C in the DMA was increased up to 76% and loss modulus was increased up to 175% when composite prepared 0.1wt% coated CaCO3 particle. Water vapor and oxygen permeability were measured to study the effect of particles on the barrier properties of composite samples. Biocomposites exhibited smaller oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) due to the increase of crystallinity and tortuosity of the composite samples. Conclusion: The results of this study have demonstrated that properties of biocomposites prepared by using low-cost commercially available filler are greatly improved to obtain the high-performance composites.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1506
Author(s):  
Miguel Aldas ◽  
Cristina Pavon ◽  
José Miguel Ferri ◽  
Marina Patricia Arrieta ◽  
Juan López-Martínez

Mater-Bi® NF866 (MB) was blended with gum rosin and two pentaerythritol esters of gum rosin (labeled as LF and UT), as additives, to produce biobased and compostable films for food packaging or agricultural mulch films. The films were prepared by blending MB with 5, 10, and 15 wt.% of each additive. The obtained films were characterized by optical, colorimetric, wettability, and oxygen barrier properties. Moreover, the additives and the MB-based films were disintegrated under composting conditions and the effect of each additive on the biodegradation rate was studied. All films were homogeneous and optically transparent. The color of the films tended to yellow tones due to the addition of pine resin derivatives. All the formulated films presented a complete UV-transmittance blocking effect in the UVA and UVB region, and those with 5 wt.% of pine resin derivatives increased the MB hydrophobicity. Low amounts of resins tend to maintain the oxygen transmission rate (OTR) values of the neat MB, due to its good solubilizing and compatibilizing effects. The disintegration under composting conditions test revealed that gum rosin completely disintegrates in about 90 days, while UT degrades 80% and LF degrades 5%, over 180 days of incubation. As expected, the same tendency was obtained for the disintegration of the studied films, although Mater-Bi® reach 28% of disintegrability over the 180 days of the composting test.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2382
Author(s):  
Dong Min Seong ◽  
Heysun Lee ◽  
Jungbae Kim ◽  
Jeong Ho Chang

This work reports the preparation of a ceramic hybrid composite film with illite and polyethylene (illite-PE), and the evaluation of the freshness-maintaining properties such as oxygen transmission rate (OTR), water vapor transmission rate (WVTR), tensile strength, and in vitro cytotoxicity. The particle size of the illite material was controlled to within 10 μm. The illite-PE masterbatch and film were prepared using a twin-screw extruder and a blown film maker, respectively. The dispersity and contents of illite material in each masterbatch and composite film were analyzed using a scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). In addition, the OTR and WVTR of the illite-PE composite film were 8315 mL/m2·day, and 13.271 g/m2·day, respectively. The in vitro cytotoxicity of the illite-PE composite film was evaluated using L929 cells, and showed a cell viability of more than 92%. Furthermore, the freshness-maintaining property was tested for a packaging application with bananas; it was found to be about 90%, as indicated by changes in the color of the banana peel, after 12 days.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


2012 ◽  
Vol 608-609 ◽  
pp. 1351-1353
Author(s):  
Wen Ming Ren ◽  
Pei Fang Cheng ◽  
Xue Feng Liu

In order to improve the practical performance of common Cellophane as packaging material, PET/PT composite film were prepared by means of Dry Lamination, and the influence of temperature on water vapor permeation of composite films was investigated at the range of 20-50°C at 50% relative humidity. The results showed that the moisture barrier properties of common Cellophane were improved obviously by means of coating on the PET films and the water vapor transmission rate of composite films was increased with temperature increasing in the range from 20°C to 50°C,the relationship between water vapor transmission rate of the composite films and the temperature followed an exponential grow curve [y=1.3441exp (0.0597x)], correlation coefficient R is 0.9957.


Sign in / Sign up

Export Citation Format

Share Document