Bacterial Cellulose: a Versatile Material for Fabrication of Conducting Nanomaterials

2020 ◽  
Vol 16 ◽  
Author(s):  
Mazhar Ul-Islam ◽  
Sumaiya Yasir ◽  
Laiqahmed Mombasawala ◽  
Sehrish Manan ◽  
Muhammad Wajid Ullah

Abstract:: Nanomaterials such as nanoparticles, nanorods, nanofibers, and nanocomposites have received immense consideration and are widely used for different applications in various fields. The exploration of new synthesis routes, simple processing techniques, and specialized applications are growing to different fields and bringing extra interest to stakeholders. Bacterial cellulose (BC), a biopolymer produced by microbial and cell-free systems, is receiving growing applications in various fields, including medical, energy, environment, food, textile, and optoelectronics. As pristine BC lacks antimicrobial activity, conducting and magnetic properties, and possesses limited biocompatibility and optical transparency, its composites with other materials are developed to bless it with such features as well as improve its existing properties. Herein, we have reviewed the role of BC as a matrix to impregnate conducting nanomaterials (e.g., carbon nanotubes, graphene, and metals and metal oxides) and polymers (polyaniline, polypyrrole, and poly (3,4-ethylenedioxythiophene)–poly (styrene sulfonate)) for the development of composite materials. These BC-based composite materials find applications in the development of energy storage devices, wearable electronics, biosensors, and controlled drug delivery systems. We have also highlighted the major hurdles to the industrialization of BC-based composites and provided future projections of such conducting nanomaterials.

2022 ◽  
Vol 23 (2) ◽  
pp. 622
Author(s):  
Fouzia Mashkoor ◽  
Sun Jin Lee ◽  
Hoon Yi ◽  
Seung Man Noh ◽  
Changyoon Jeong

Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.


Nanoscale ◽  
2020 ◽  
Vol 12 (34) ◽  
pp. 17649-17662 ◽  
Author(s):  
Jayesh Cherusseri ◽  
Deepak Pandey ◽  
Kowsik Sambath Kumar ◽  
Jayan Thomas ◽  
Lei Zhai

Metal–organic frameworks are emerging players in the fabrication of flexible energy storage devices to power flexible and wearable electronics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2062
Author(s):  
Lorenzo Migliorini ◽  
Tommaso Santaniello ◽  
Francesca Borghi ◽  
Paolo Saettone ◽  
Mauro Comes Franchini ◽  
...  

The interest for biodegradable electronic devices is rapidly increasing for application in the field of wearable electronics, precision agriculture, biomedicine, and environmental monitoring. Energy storage devices integrated on polymeric substrates are of particular interest to enable the large-scale on field use of complex devices. This work presents a novel class of eco-friendly supercapacitors based on biodegradable poly(3-hydroxybutyrrate) PHB, ionic liquids, and cluster-assembled gold electrodes. By electrochemical characterization, we demonstrate the possibility of tuning the supercapacitor energetic performance according to the type and amount of the ionic liquid employed. Our devices based on hydrophobic plastic materials are stable under cyclic operation and resistant to moisture exposure.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Le Li ◽  
Yu Zhang ◽  
Hengyi Lu ◽  
Yufeng Wang ◽  
Jingsan Xu ◽  
...  

AbstractThe development of energy storage devices that can endure large and complex deformations is central to emerging wearable electronics. Hydrogels made from conducting polymers give rise to a promising integration of high conductivity and versatility in processing. However, the emergence of conducting polymer hydrogels with a desirable network structure cannot be readily achieved using conventional polymerization methods. Here we present a cryopolymerization strategy for preparing an intrinsically stretchable, compressible and bendable anisotropic polyvinyl alcohol/polyaniline hydrogel with a complete recovery of 100% stretching strain, 50% compressing strain and fully bending. Due to its high mechanical strength, superelastic properties and bi-continuous phase structure, the as-obtained anisotropic polyvinyl alcohol/polyaniline hydrogel can work as a stretching/compressing/bending electrode, maintaining its stable output under complex deformations for an all-solid-state supercapacitor. In particular, it achieves an extremely high energy density of 27.5 W h kg−1, which is among that of state-of-the-art stretchable supercapacitors.


2017 ◽  
Vol 4 (4) ◽  
pp. 522-545 ◽  
Author(s):  
Saikat Dutta ◽  
Jeonghun Kim ◽  
Yusuke Ide ◽  
Jung Ho Kim ◽  
Md. Shahriar A. Hossain ◽  
...  

There has recently been a major thrust toward advanced research in the area of hierarchical carbon nanostructured electrodes derived from cellulosic resources, such as cellulose nanofibers (CNFs), which are accessible from natural cellulose and bacterial cellulose (BC).


2022 ◽  
Author(s):  
Xiaohong Ding ◽  
Ruilai Liu ◽  
Jiapeng Hu ◽  
Jingyun Zhao ◽  
Jinjin Wu ◽  
...  

The cost-effective synthesis of flexible energy storage devices with high energy and power densities is a challenge in wearable electronics. Here, we report a facile, efficient, and scalable approach for...


Author(s):  
Xiaoqin Li ◽  
Xiaojuan Chen ◽  
Zhaoyu Jin ◽  
Panpan Li ◽  
Dan Xiao

Conductive polymers endow fiber-shaped electrodes and devices with excellent mechanical and electrochemical performance for energy storage in future wearable electronics.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Azadeh Mirabedini ◽  
Zan Lu ◽  
Saber Mostafavian ◽  
Javad Foroughi

The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 μm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg−1 and an extremely high power of 1399 W kg−1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document