Identification of Uptake Mechanism of Cell-Penetrating Peptides by their Polar Profile

2015 ◽  
Vol 10 (5) ◽  
pp. 586-598 ◽  
Author(s):  
Carlos Polanco ◽  
José Samaniego Mendoza ◽  
Thomas Buhse ◽  
Jorge Alberto Castañón González ◽  
Arturo Gimbel ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 101-123 ◽  
Author(s):  
Ivana Ruseska ◽  
Andreas Zimmer

In today’s modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.



1970 ◽  
Vol 60 (4) ◽  
Author(s):  
Carlos Polanco ◽  
José Lino Samaniego ◽  
Jorge Alberto Castañón-González ◽  
Thomas Buhse ◽  
Marili Leopold Sordo

Selective antibacterial peptides containing less than 30 amino acid residues, cationic, with amphipathic properties, have been the subject of several studies due to their active participation and beneficial effects in strengthening the immune system of all living organisms. This manuscript reports the results of a comparison between the group of selective antibacterial peptides and another group called "cell penetrating peptides". An important number of the selective antibacterial peptides are cell penetrating peptides, suggesting that their toxicity is related to their uptake mechanism. The verification of this observation also includes the adaptation of a method previously published, called Polarity index, which reproduces and confirms the action of this new set of peptides. The efficiency of this method was verified based on four different databases, yielding a high score. The verification was based exclusively on the peptides already reported in the databases which have been experimentally verified.



2020 ◽  
Vol 12 (15) ◽  
pp. 1431-1446 ◽  
Author(s):  
Annarita Falanga ◽  
Lucia Lombardi ◽  
Emilia Galdiero ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Cell-penetrating peptides present huge biomedical applications in a variety of pathologies, thanks to their ability to penetrate membranes and carry a variety of cargoes inside cells. Progress in peptide synthesis has produced a greater availability of virtually any synthetic peptide, increasing their attractiveness. Most molecules when associated to a cell-penetrating peptides can be delivered into a cell, however, understanding of the critical factors influencing the uptake mechanism is of paramount importance to construct nanoplatforms for effective delivery in vitro and in vivo in medical applications. Focus is now on the state-of-art of the mechanisms enabling therapeutics/diagnostics to reach the site target of their activities, and in support of scientists developing platforms for drug delivery and personalized therapies.



2007 ◽  
Vol 403 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Marjan M. Fretz ◽  
Neal A. Penning ◽  
Saly Al-Taei ◽  
Shiroh Futaki ◽  
Toshihide Takeuchi ◽  
...  

Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4–12 °C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 °C incubations. At temperatures between 12 and 30 °C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 °C. Small increases in the extracellular peptide concentration in 37 °C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-β-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane.



2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemeh Madani ◽  
Staffan Lindberg ◽  
Ülo Langel ◽  
Shiroh Futaki ◽  
Astrid Gräslund

Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s).



2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ihsan Omur Akdag ◽  
Elif Ozkirimli

Peptide based drug design efforts have gained renewed interest with the discovery of cargo-carrying or cell-penetrating peptides. Understanding the translocation mechanism of these peptides and identifying the residues or elements that contribute to uptake can provide valuable clues toward the design of novel peptides. To this end, we have performed steered molecular dynamics (SMD) simulations on the pVEC peptide from murine vascular endothelial-cadherin protein and its two variants. Translocation was found to occur in three stages, adsorption via the cationic residues, inclusion of the whole peptide inside the membrane accompanied by formation of a water defect, and exit of both peptide and water molecules from the bilayer. Our simulation results suggest that the precise order in which the hydrophobic, cationic, and the polar regions are located in the amphipathic pVEC peptide contributes to its uptake mechanism. These results present new opportunities for the design of novel cell-penetrating and antimicrobial peptides.



2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Ilja Tabujew ◽  
Marco Lelle ◽  
Kalina Peneva

AbstractMore than two decades ago, a group of peptides, now known as cell-penetrating peptides, sparked the hope that the ultimate carrier molecules have been found. The high expectations for these peptides, which are reflected in their bold name, led to many disappointments due to the controversial results their utilization entailed and nowadays even their effectiveness has been called into question. In this review, we discuss the uptake mechanism and application of cell penetrating peptides as mediators for organelle specific delivery of nanocarriers, pointing out the possibilities as well as strategies of their successful utilization. Additionally, we provide an overview of the conjugation techniques usually employed for the attachment of cell penetrating peptides to quantum dots, as well as silver and gold nanoparticles, and we address the various aspects that need to be considered for the successful implementation of cell penetrating peptides for organelle-specific delivery of nanoparticles into cells.



Sign in / Sign up

Export Citation Format

Share Document