Cytotoxic and Apoptotic Effects of Novel Pyrrolo[2,3-d]Pyrimidine Derivatives Containing Urea Moieties on Cancer Cell Lines

2019 ◽  
Vol 18 (9) ◽  
pp. 1303-1312 ◽  
Author(s):  
Zühal Kilic-Kurt ◽  
Filiz Bakar-Ates ◽  
Bahriye Karakas ◽  
Özgür Kütük

Background: Pyrrolo[2,3-d]pyrimidines have been recently reported to have anticancer activities through inhibition of different targets such as, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase, Janus Kinase (JAK), mitotic checkpoint protein kinase (Mps1), carbonic anhydrase, MDM-2. On the other hand, aryl urea moieties which are found in some tyrosine kinase inhibitors such as Sorafenib and Linifanib have aroused recent attention as responsible for anticancer activities. The aims of this paper are to synthesize pyrrolo[ 2,3-d]pyrimidine derivatives containing urea moiety and evaluate their anti-cancer activity against human lung cancer cell line (A549), prostate cancer cell line (PC3), human colon cancer cell line (SW480) and human breast cancer cell line (MCF-7). Methods: A series of new pyrrolo[2,3-d]pyrimidines containing urea moieties have been synthesized as Scheme 1. In vitro cytotoxicity of target compounds were evaluated against, SW480, PC3, A549 and MCF-7 human cancer cell lines using a MTT assay. In order to evaluate the mechanism of cytotoxic activity of compounds 9e, 10a and 10b, having the best cytotoxic activity, Annexin V binding assay, cell cycle analysis and western blot analysis were performed. Results: Among the target compounds, 10a (IC50 = 0.19 µM) was found to be the most potent derivative against PC3 cells. Compound 10b and 9e showed the strong cytotoxic activity against MCF-7 and A549 cells with IC50 value of 1.66 µM and 4.55 µM, respectively. Flow cytometry data suggest that the cytotoxic activity of the compounds on cancer cells might be mediated by apoptosis revealing a significant increase in the percentage of late apoptotic cells and causing a cell cycle arrest at different stages. Western blot analysis of apoptosis marker demonstrated that these compounds induce apoptosis through the intrinsic pathway. Conclusion: Compound 9e displayed the strongest cytotoxicity against A549 cancer cell line, and induced late apoptosis in A549, as confirmed by cell cycle arrest in G0/G1 phase. In addition, compound 9e reduced expression of the anti-apoptotic protein Bcl-2 and enhanced expression of the pro-apoptotic protein Bax, besides increased caspase-9 and caspase-3, as well as cleavage of PARP levels. These results suggest that compound 9e showed a cytotoxic effect in A549 cells through activation of the mitochondrial apoptotic pathway. Further studies will be undertaken in our laboratory to improve cytotoxic activity of compound 9e and to identify the biological targets of 9e which are responsible for anticancer activity.

2020 ◽  
Vol 5 (38) ◽  
pp. 11850-11853
Author(s):  
Anderson Roberto de Souza ◽  
Mona Stefany de Souza Castro ◽  
Thiago Olímpio de Souza ◽  
Rodrigo Cassio Sola Veneziani ◽  
Jairo Kenupp Bastos ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 1072-1086
Author(s):  
Stephanie B. Arulnathan ◽  
Kok H. Leong ◽  
Azhar Ariffin ◽  
Huda S. Kareem ◽  
Kevin K.H. Cheah

Background: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines. Aim and Objectives: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest. Methods: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry. Results: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced. Conclusion: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.


Genes ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 281 ◽  
Author(s):  
Amin Boroumand Moghaddam ◽  
Mona Moniri ◽  
Susan Azizi ◽  
Raha Abdul Rahim ◽  
Arbakariya Bin Ariff ◽  
...  

Author(s):  
Awad A Algarni

Aloe saudiarabica and Aloe shadensis are a rare species of the genus Aloe found only in Saudi Arabia. The cytotoxic activity of both plants were evaluated in the current study using three different human cancer cell line, lung carcinoma (A-549), breast adenocarcinoma (MCF-7) and liver cancer (HepG2), assessed by WST-1 cell viability assays. The results indicate that the Aloe saudiarabica and Aloe shadensis showed weak cytotoxic effects against all three tested cancer cell lines, with an IC50 value of >300 μg/ml. In addition, HepG2 cells were more sensitive to Aloe saudiarabica treatment than MCF-7 and A549 cells, while MCF-7 cells were more sensitive to Aloe shadensis treatment than HepG2 and A549 cells. This study also identified the characteristic chemical constituents of the two plants using gas chromatography-mass spectrometry technique and the result indicated that 9-octadecenoic acid (Z)-, methyl ester (32.23%) was the main compound of Aloe saudiarabica while methyl 9-octadecenoate (17.28%) was the main compound of Aloe shadensis. In conclusion, the in vitro evaluation of Aloe saudiarabica and Aloe shadensis methanolic extraction showed low cytotoxicity on the viability of A-549, MCF-7 and HepG2 cell lines.


2019 ◽  
Vol 16 (5) ◽  
pp. 522-532 ◽  
Author(s):  
Bedia Kocyigit-Kaymakcioglu ◽  
Senem Sinem Yazici ◽  
Fatih Tok ◽  
Miriş Dikmen ◽  
Selin Engür ◽  
...  

Background: Hydrazones, one of the important classes of organic molecules, are pharmaceutical agents comprising –CO-NH-N=CH- group in the structure therefore and exhibiting significant biological activity. Methods: 5-Chloro-N’-[(substituted)methylidene] pyrazine-2-carbohydrazide (3a-g) and their Pd(II) complexes (4a-h) were synthesized and investigated in vitro anticancer activity on A549, Caco2 cancer and normal 3T3 fibroblast cell lines, using the MTT assay. Results: Anticancer activity screening results revealed that some compounds showed remarkable cytotoxic effect. Among them, 5-chloro-N'-[(4-hydroxyphenyl)methylidene] pyrazine-2-carbohydrazide (3c) displayed higher cytotoxic activity against A549 cancer cell line than the reference drug cisplatin. Conclusion: Compound 3c showed high cytotoxic activity against A549 cancer cell line but it showed low cytotoxic effect against normal 3T3 fibroblast cell line. Antiproliferative and antimetastatic effects of 3c were determined by the real-time monitoring of cell proliferative system (RTCA DP). The cell proliferation, metastatic and invasive activities of A549 cells were decreased due to increased concentration of 3c.


2021 ◽  
Vol 12 (6) ◽  
pp. 8094-8104

A series of novel thiazolidinone-isatin hybrids have been synthesized through the Knoevenagel reaction of isatin derivatives with synthesized thiazolidinone scaffolds and then evaluated for their in vitro antibacterial effects on Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Cytotoxic effects of the compounds on non-small-cell lung cancer cells (A549 cells), breast epithelial cancer cell line (MCF-7), and prostate cancer cells (PC3 cells) were investigated. Among compounds tested for antibacterial activity, S. aureus was susceptible to compound 7d. The most potent compounds against A549, MCF-7, and PC3 tumor cells were found to be 7g. DAPI staining of all cancer cell lines treated with compound 7g, associated with cell death. We finally confirmed that apoptosis occurred in A549 cells by up-regulated Bax expression and down-regulated Bcl-2 expression from the mitochondrial pathway of apoptosis by using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. Our findings suggested that compound 7g may be a good target in designing cancer therapy strategies.


2016 ◽  
Vol 89 (4) ◽  
pp. 566-576 ◽  
Author(s):  
Lamia W. Mohamed ◽  
Azza T. Taher ◽  
Ghada S. Rady ◽  
Mamdouh M. Ali ◽  
Abeer E. Mahmoud

Sign in / Sign up

Export Citation Format

Share Document