New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms

Author(s):  
Milad Ashrafizadeh ◽  
Reza Mohammadinejad ◽  
Shima Tavakol ◽  
Zahra Ahmadi ◽  
Amihossein Sahebkar

Background: Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for the 15-20% of breast cancer mortality. Despite the many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. Methods: A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. Results: It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. Conclusion: Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoli Li ◽  
Duanfang Zhou ◽  
Yongqing Cai ◽  
Xiaoping Yu ◽  
Xiangru Zheng ◽  
...  

AbstractAndrogen receptor (AR) is an important prognostic marker and therapeutic target in luminal androgen receptor triple-negative breast cancer (LAR TNBC) and prostate cancer (PCa). Endoplasmic reticulum (ER) stress may activate the unfolded protein response (UPR) to regulate associated protein expression and is closely related to tumor growth and drug resistance. The effect of ER stress on AR expression and signaling remains unclear. Here, we focused on the regulation and underlying mechanism of AR expression induced by ER stress in LAR TNBC and PCa. Western blotting and quantitative RT-PCR results showed that AR expression was markedly decreased under ER stress induced by thapsigargin and brefeldin A, and this effect was dependent on PERK/eIF2α/ATF4 signaling activation. Chromatin immunoprecipitation-PCR and luciferase reporter gene analysis results showed that ATF4 bound to the AR promoter regions to inhibit its activity. Moreover, ATF4 overexpression inhibited tumor proliferation and AR expression both in vitro and in vivo. Collectively, these results demonstrated that ER stress could decrease AR mRNA and protein levels via PERK/eIF2α/ATF4 signaling in LAR TNBC and PCa. Targeting the UPR may be a treatment strategy for AR-dependent TNBC and PCa.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1383
Author(s):  
Mi-Ha Ju ◽  
Kyung-Do Byun ◽  
Eun-Hwa Park ◽  
Jin-Hwa Lee ◽  
Song-Hee Han

Galectin-9 (Gal-9) is an immune checkpoint protein that facilitates T cell exhaustion and modulates the tumor-associated microenvironment, and could be a potential target for immune checkpoint inhibition. This study was conducted to assess Gal-9 expression in triple-negative breast cancer (TNBC) and evaluate its association with programmed cell death ligand 1 (PD-L1) expression and immune cell infiltration in tumors and the clinical outcome of patients. Overall, 109 patients with TNBC were included. Gal-9 expression was assessed its relationships with tumor clinicopathologic characteristics, tumor-infiltrating lymphocyte (TIL) levels, PD-L1+ immune cells, and tumor cells by tissue microarray and immunohistochemistry. Low Gal-9 expression was statistically correlated with higher tumor stage (p = 0.031) and presence of lymphovascular invasion (p = 0.008). High Gal-9 expression was associated with a high level of stromal TILs (sTIL; p = 0.011) and positive PD-L1 expression on tumor cells (p = 0.004). In survival analyses, low Gal-9 expression was associated with significantly poor OS (p = 0.013) in patients with TNBC with PD-L1 negativity in tumor cells. Our findings suggest that increased Gal-9 expression is associated with changes in the antitumor microenvironment, such as increased immune cell infiltration and antimetastatic changes. This study emphasizes the predictive value and promising clinical applications of Gal-9 in TNBC.


2017 ◽  
Vol 51 (2) ◽  
pp. e12402 ◽  
Author(s):  
Dejuan Sun ◽  
Lingjuan Zhu ◽  
Yuqian Zhao ◽  
Yingnan Jiang ◽  
Lixia Chen ◽  
...  

2018 ◽  
Vol 36 (1) ◽  
Author(s):  
Eliana La Rocca ◽  
Michela Dispinzieri ◽  
Laura Lozza ◽  
Gabriella Mariani ◽  
Serena Di Cosimo ◽  
...  

2021 ◽  
Author(s):  
Shahan Mamoor

Women diagnosed with triple negative breast cancer can benefit neither from endocrine therapy nor from HER2-targeted therapies (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding cyclin A2, CCNA2, when comparing the tumor cells of patients with triple negative breast cancer to normal mammary ductal cells (2). CCNA2 was also differentially expressed in bulk tumor in human breast cancer (3). CCNA2 mRNA was present at significantly increased quantities in TNBC tumor cells relative to normal mammary ductal cells. Analysis of human survival data revealed that expression of CCNA2 in primary tumors of the breast was correlated with overall survival in patients with basal-like type cancer, while within triple negative breast cancer, primary tumor expression of CCNA2 was correlated with overall survival in patients with basal-like 1, basal-like 2, and mesenchymal subtype disease. CCNA2 may be of relevance to initiation, maintenance or progression of triple negative breast cancers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253176
Author(s):  
Katsuhiro Yoshikawa ◽  
Mitsuaki Ishida ◽  
Hirotsugu Yanai ◽  
Koji Tsuta ◽  
Mitsugu Sekimoto ◽  
...  

Introduction CD155 is an immune checkpoint protein. Its overexpression is an indicator of poor prognosis in some types of cancer. However, the significance of CD155 expression in patients with triple-negative breast cancer, and the relationship between CD155 and programmed death-ligand 1 (PD-L1) expression, have not yet been analyzed in detail. Methods Using immunohistochemical staining and tissue microarrays, we analyzed the expression profiles of CD155 and PD-L1 in 61 patients with triple-negative breast cancer. Relapse-free survival and overall survival rates were compared according to CD155 expression. The correlation between CD155 expression and clinicopathological factors, including PD-L1 expression (using SP142 and 73–10 assays), was also examined. Results CD155 expression was noted in 25 patients (41.0%) in this cohort. CD155 expression did not correlate with pathological stage, histological grade, Ki-67 labeling index, or stromal tumor-infiltrating lymphocytes. Only PD-L1 expression in tumor cells by SP142 assay significantly correlated with CD155 expression (p = 0.035); however, PD-L1 expression in tumor cells by 73–10 assay did not show a correlation (p = 0.115). Using the 73–10 assay, 59% of patients showed CD155 and/or PD-L1 expression in tumor cells. Moreover, using the SP142 assay, 63.3% of patients showed CD155 and/or PD-L1 expression in immune cells. CD155 expression did not correlate with either relapse-free survival or overall survival (p = 0.485 and 0.843, respectively). Conclusions CD155 may be a novel target for antitumor immunotherapy. The results of this study indicate that CD155 may expand the pool of candidates with triple-negative breast cancer who could benefit from antitumor immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document