Antibiotic Loaded Nano Rod Bone Cement for the Treatment of Osteomyelitis

Author(s):  
Mala Rajendran ◽  
Gazana Iraivan ◽  
Ghayathri BL ◽  
Preetha Mohan ◽  
Keerthana Ravi Chandran ◽  
...  

Background: Polymethyl methacrylate (PMMA) bone cement is the clinical gold standard biomaterial for local antibiotic therapy in osteomyelitis. However, it releases 50% of the antibiotic within first three days. It generates excessive heat during polymerization and is non-biodegradable. It must be removed by another operation. The best-known alternative for PMMA is hydroxyapatite. Objective: The present work is focused to synthesize the biodegradable hydroxyapatite in nano form for slow and sustained release of antibiotics and to study the release kinetics of antibiotics. Method: Nano-hydroxyapatite was synthesized by co-precipitation method and characterized by particle size analyser, transmission emission microscopy, fourier transform infrared spectroscopy and energy dispersive X-Ray analysis. Antibiotic loaded nano-hydroxyapatite was prepared as 7 mm beads. The efficiency of drug loaded nano- hydroxyapatite beads against osteomyelitic isolates were evaluated by well diffusion assay. Zero order, first order, second order, Higuchi model Korsmeyer-Peppas and Gompertz model were fit into the release kinetics of antibiotics from hydroxyapatite. Results: Average size of nano-hydroxyapatite was 5 nm. The bactericidal activity exhibited by antibiotic loaded micro sized hydroxyapatite was therapeutic until 10 days only whereas antibiotic loaded nano-hydroxyapatite was therapeutic until 8 weeks. This confirms the burst release of antibiotics from micro sized hydroxyapatite beads. In contrast, the release was slow and sustained upto 8 weeks from nano-hydroxyapatite. Koresmeyer-Peppas model fits into the release kinetics of antibiotics from nano-hydroxyapatite. Conclusion: Nano-hydroxyapatite with Ca/P ratio of 1.78 is suitable for the slow and sustained delivery of antibiotics for 8 weeks.

2022 ◽  
Author(s):  
Yuan Li ◽  
Jiayin Huang ◽  
Zhiheng Hu ◽  
Mingyong Zeng ◽  
Zunying Liu ◽  
...  

An inclusion system of embedding ferulic acid into β-cyclodextrin (FACD) with different host-guest stoichiometry was prepared by a co-precipitation method. Then, the physicochemical properties and release kinetics of the FACD...


2006 ◽  
Vol 6 (9) ◽  
pp. 2929-2935 ◽  
Author(s):  
Tse-Ying Liu ◽  
Ting-Yu Liu ◽  
San-Yuan Chen ◽  
Shian-Chuan Chen ◽  
Dean-Mo Liu

In order to explore the effect of nanofiller on the regulation of the drug release behavior from microsphere-embedded hydrogel prepared by carboxymethyl-hexanoyl chitosan (HNOCC) and O-hexanoyl chitosan (OHC), the release kinetics was investigated in terms of various amounts of calcium-deficient hydroxyapatite (CDHA) nanoparticles incorporated. HNOCC is a novel chitosan-based hydrophilic matrix with a burst release profile in a highly swollen state. The drug release kinetics of the HNOCC hydrogel can be regulated by incorporation of well-dispersed CDHA nanoparticles. It was found that the release duration of ibuprofen (IBU) from HNOCC was prolonged with increasing amounts of CDHA which acts as a crosslink agent and diffusion barrier. On the contrary, the release duration of the IBU from OHC (hydrophobic phase) was shortened through increasing the CDHA amount over 5%, which is due to the hydrophilic nature of the CDHA nanoparticles destroying the intermolecular hydrophobic interaction and accelerating OHC degradation. Thus, water accessibility and molecular relaxation were enhanced, resulting in a higher release rate. In addition, sustained and sequential release behavior was achieved by embedding the OHC microspheres (hydrophobic phase) into the HNOCC (hydrophilic phase) matrix, which could significantly prolong the release duration of the HNOCC drug-loaded implant.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ashley E. Levack ◽  
Kathleen Turajane ◽  
Xu Yang ◽  
Andy O. Miller ◽  
Alberto V. Carli ◽  
...  

2014 ◽  
Vol 07 (06) ◽  
pp. 1440013 ◽  
Author(s):  
Xiangjun Li ◽  
Hongxing Xin ◽  
Xiaoying Qin ◽  
Xueqin Yuan ◽  
Di Li ◽  
...  

Lithium and Mn rich solid solution materials Li [ Li 0.26 Ni 0.07 Co 0.07 Mn 0.56] O 2 were synthesized by a carbonate co-precipitation method and modified with a layer of graphene. The graphene-modified cathodes exhibit improved rate capability and cycling performance as compared to the bare cathodes. Electrochemical impedance spectroscopy (EIS) analyses reveal that the improved electrochemical performances are due to acceleration kinetics of lithium-ion diffusion and the charge transfer reaction of the graphene-modified cathodes.


2014 ◽  
Vol 602-603 ◽  
pp. 97-100
Author(s):  
Bing Bing Fan ◽  
Ke Ke Guan ◽  
Hao Chen ◽  
Xiao Xuan Pian ◽  
Chen Yang Wang ◽  
...  

CaO(15%)-ZrO2nano-powders were prepared by microwave pyrolysis in a multi-model chamber at the temperature ranging from 650°C to 800°C, with the precursor processed at different reaction temperature from 0°C to 80°C by chemical co-precipitation method. XRD and SEM techniques were used to characterize the phase transition and micrograph of powders. It is found that the content of m-ZrO2phase decreased with the increasing of reaction temperature and pyrolysis temperature. The high dispersed and superfine nano-powders were obtained at the pyrolysis temperature of 750°C for 20 min at 80°C. And only cubic ZrO2phase were detected in CaO (15%)-ZrO2powders and the average size of the powders is about 41 nm.


Author(s):  
Suverna Trivedi ◽  
Ram Prasad ◽  
S. Chadha

This paper describes the kinetics of catalytic air oxidation of propane. The kinetics data were collected in a plug flow tubular reactor. The experiments were performed over the NiCo2O4 catalyst prepared by co-precipitation method followed by calcination at 400 oC. The kinetic data were collected under the following conditions: 200 mg of catalyst, 2.5 % of propane in air, total flow rate of 60 mL/min, and temperature ranges of 130-170 oC. The data were fitted to the power law rate equation. The activation    energy and frequency factor were found to be 59.3 kJ/g mol and 2.9×108 (mol)0.47.L0.53/g cat.h, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 20th November 2016; Revised: 26th February 2017; Accepted: 26th February 2017How to Cite: Trivedi, S., Prasad, R., Chadha, S. (2017). Oxidation Kinetics of Propane-Air Mixture over NiCo2O4 Catalyst Emitted from LPG Vehicles. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 191-196 (doi:10.9767/bcrec.12.2.798.191-196)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.798.191-196 


2021 ◽  
Vol 21 (4) ◽  
pp. 2576-2581
Author(s):  
N. T. T. Thao ◽  
D. H. Nguyen ◽  
Pham The Kien ◽  
Thanh-Tung Duong ◽  
Nguyen Thi Kim Lien ◽  
...  

Magnetic magnetite (Fe3O4) nanoparticles with average sizes of 5.11, 10.53, and 14.76 nm were synthesized by the chemical co-precipitation method. The surface area of Fe3O4 nanoparticles (average size of 5.11 nm) had the largest value of 167 m2/g. The adsorption capacity for removing arsenic (As(V)) from water at 3 ppm concentration was investigated by atomic absorption spectroscopy. Results showed that the As(V) adsorption capacity of Fe3O4 was dependent on particle size. The maximum absorption efficiency (Hmax) reached 99.02%, the equilibrium time was 30 min; the maximum Langmuir isotherm adsorption capacity was 14.46 mg/g with Fe3O4 nanoparticle an average size of 5 nm. The results indicate that reducing the size of Fe3O4 nanoparticles is a promised way for As(V) ion removal from water and wastewater treatment.


In–doped ZnS nanoparticles are synthesized via chemical co-precipitation method using different precursor solutions of zinc acetate (source of Zn2+ ions), sodium sulphide (source of S2- ions), indium sulphate (source of dopant In3+ ions), ammonium hydroxide (works as a complexing agent) and EDTA (as a capping agent). The effect of different concentrations of Indium (0%, 1%, 3%, and 5%) on the structure, morphology, and elemental composition properties of nanoparticles have been studied using different characterization techniques. XRD study shows the formation of cubic structure in the synthesized nanoparticles. The average size of nanoparticles calculated using Debye - Scherrer’s equation is in the range of 5.7–2.4 nm. It has been observed that the size of ZnS nanoparticles decrease with an increase in Indium concentration. SEM micrographs have explored the surface feature of the nanoparticles. It clearly shown that the morphology of spherical nanoparticles is changing with In concentration. The elemental identification and mapping has indicated the homogeneous distribution of Zinc, Sulfur and Indium content in synthesized nanoparticles. FT–IR spectra have recognized the existance of characteristics absorption peaks for In-doped ZnS


2020 ◽  
Author(s):  
Leena V. Hublikar ◽  
Sharanabasava V Ganachari ◽  
Jayachandra S. Yaradoddi ◽  
Aasim U. Mokashi

Abstract Fundamental research and industrially applied research, currently depend on magnetic oxide nanoparticles and ferromagnetic oxides due to their extensive applications for electronic, magnetic, optical sensor and absorptive activities. ferromagnetic substances mainly contain different type of Ferrite. Ferrite material constitutes, Iron oxide (Fe2O3) and divalent metal oxides of Transition metals like cobalt, nickel etc. The key objective of this paper is to study the impending applications of nano - ferrites doped with bivalent transition metals with their properties. Low-Temperature Self-Propagating combustion method was used to synthesize the particles. Synthesized Zinc and Cobalt Nano ferrites from the chemical co-precipitation method were found to be of 20 to 90 nm in average size, and comparative study of their properties using the results of Fourier-transform spectroscopy (FTIR) and X-ray powder diffraction (XRD). The Field Emission Scanning Electron Microscope (FESEM) confirms the conception of ferrite nanoparticles with a structure type cubic spinel. Further comparative Sensing studies showed that the sample displays variation in resistance when gases are passed over the surface, and the change in resistance is observed.


Author(s):  
Sanjay B. Nagdeote

The Sr0.5Ba0.5Nb2O6 (SBN-50) is Synthesis by coprecipitation method in nanoscale. TG/DTA shows the reaction and tetragonal phase formation occur at low temperatures, due to which the good homogeneity and morphology of the particles is observed. The average size of the particles was found to be ~ 45 nm. The lattice parameters is found very close to the reported values of single crystals despite method of synthesis and size of the particles. A reflectance spectrum in UV and visible regions shows less reflectance for 337nm and 519nm respectively.


Sign in / Sign up

Export Citation Format

Share Document