scholarly journals The Impact of Collaborative Style on the Perception of 2D and 3D Videoconferencing Interfaces

2012 ◽  
Vol 6 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Joerg Hauber
Keyword(s):  
PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76373 ◽  
Author(s):  
Kyung Eun Sung ◽  
Xiaojing Su ◽  
Erwin Berthier ◽  
Carolyn Pehlke ◽  
Andreas Friedl ◽  
...  

2018 ◽  
Vol 8 (12) ◽  
pp. 2406 ◽  
Author(s):  
Hamed Saghafi ◽  
Mohamad Fotouhi ◽  
Giangiacomo Minak

This paper reviews recent works on the application of nanofibers and nanoparticle reinforcements to enhance the interlaminar fracture toughness, to reduce the impact induced damage and to improve the compression after impact performance of fiber reinforced composites with brittle thermosetting resins. The nanofibers have been mainly used as mats embedded between plies of laminated composites, whereas the nanoparticles have been used in 0D, 1D, 2D, and 3D dimensional patterns to reinforce the matrix and consequently the composite. The reinforcement mechanisms are presented, and a comparison is done between the different papers in the literature. This review shows that in order to have an efficient reinforcement effect, careful consideration is required in the manufacturing, materials selection and reinforcement content and percentage. The selection of the right parameters can provide a tough and impact resistant composite with cost effective reinforcements.


2010 ◽  
Vol 67 (3) ◽  
pp. 611-632 ◽  
Author(s):  
Michael T. Kiefer ◽  
Matthew D. Parker ◽  
Joseph J. Charney

Abstract Fire lines are complex phenomena with a broad range of scales of cross-line dimension, undulations, and along-line variation in heating rates. While some earlier studies have examined parcel processes in two-dimensional simulations, the complexity of fire lines in nature motivates a study in which the impact of three-dimensional fire line details on parcel processes is examined systematically. This numerical modeling study aims to understand how fundamental processes identified in 2D simulations operate in 3D simulations where the fire line is neither straight nor uniform in intensity. The first step is to perform simulations in a 3D model, with no fire line undulations or inhomogeneity. In general, convective modes simulated in the 2D model are reproduced in the 3D model. In one particular case with strong vertical wind shear, new convection develops separate from the main line of convection as a result of local changes to parcel speed and heating. However, in general the processes in the 2D and 3D simulations are identical. The second step is to examine 3D experiments wherein fire line shape and along-line inhomogeneity are varied. Parcel heating, as well as convective mode, is shown to exhibit sensitivity to fire line shape and along-line inhomogeneity.


2019 ◽  
Vol 272 ◽  
pp. 01021
Author(s):  
J V Muruga Lal Jeyan ◽  
Jency Lal ◽  
M Senthil Kumar ◽  
Arfaj Ahamed Anwar

This document guides to an efficient use of FDVCAS system. FDVCAS is a reconstruction, playback, interactive visualization tool, which collects, stores, processes, analyses and present the flight data in high fidelity graphical presentation in 2D and 3D format. It synchronizes and presents in both graphical and synthetic visual form to the extends of analysing the impact of the data on the system in 3D graphic animation. The existing process involves in capturing the data from different input sources and formats, analysing the features of the data monitoring is done manually in offline in a unsynchronized fashion, This is difficult, time consuming and requires highly skilled technical expertise as it is visualized in plain data form. The above standard procedures followed shall be integrated and automated with minimum intelligence to be built, in with the system. In order to analyse the flight data in a coherent way it is required to integrate both 2D and 3D form The proposed concept is the Development of a system with a single solution by providing data display, graphical charts and replay features with a sophisticated graphical user interface, which is super imposed on the outside window imagery. FDVCAS consists of Bypass data acquisition system, Outside Window Imagery (OWI) system with graphical analyser. Bypass data acquisition system receives data from aircraft recorder and transmits the data in engineering format to FDVCAS system. The OWI system has three main modules namely, 3D Visual module, GUI based Graphical analyser and Warning display module. The warnings and the graphical plots are super imposed on the 3D Visual.


2019 ◽  
Vol 629 ◽  
pp. A17
Author(s):  
Luc Dessart ◽  
Edouard Audit

Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation hydrodynamics simulations of type II SN light curves from red and blue supergiant star explosions to investigate the impact of inhomogeneities in density or composition on SN observables, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.


2014 ◽  
Vol 23 (4) ◽  
pp. 430-448 ◽  
Author(s):  
Sabrina Sobieraj ◽  
Nicole C. Krämer

As 3D movie screenings have recently seen an increase in popularity, it would appear that 3D is finally ready to stand the test of time. To examine the effect of 3D on the experience of enjoyment, we refer to the model of entertainment by Vorderer, Klimmt, and Ritterfeld (2004), according to which both technological and personal prerequisites can induce enjoyment. The model was further adapted for the cinema context by including the appeal of special effects, fanship, age, and gender. To ascertain the impact of the suggested prerequisites, we conducted a field study comparing the enjoyment experiences of 2D and 3D audiences watching the same fantasy movies in a between-subjects design (N = 289). Results showed that the technological features of stereoscopic 3D cannot predict enjoyment. However, the feeling of presence, the appeal of the special effects, and fanship are predictors of enjoyment.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5044
Author(s):  
Teresa Santos ◽  
Raquel Deus ◽  
Jorge Rocha ◽  
José António Tenedório

In coastal areas, the tourism sector contributes to the local economy, generating income, employment, investments and tax revenues but the rapid urban expansion creates great pressure on local resources and infrastructures, with negative repercussions on the residents’ quality of life, but also compromising the visitor’s experience. These areas face problems such as the formation of meteorological effects known as heat islands, due to the soil sealing, and increased energy demand in the peak season. To evaluate the impact of urban growth spatial pattern and change, three strategic sustainable challenges—urban form, urban energy, and urban outdoor comfort—were selected. The progress towards sustainability was measured and analyzed in a tourist city in the Algarve region, Portugal, for the period 2007–2018, using geographic information. A set of 2D and 3D indicators was derived for the building and block scales. Then, a change assessment based on cluster analysis was performed, and three different trends of sustainable development were identified and mapped. Results allow detecting the urban growth patterns that lead to more sustainable urban areas. The study revealed that a high sustainable development was observed in 12% of the changed blocks in the study area. All indicators suggest that the growth pattern of the coastal area is in line with the studied sustainability dimensions. However, most of the blocks that changed between 2007 and 2018 (82%) followed a low sustainable development. These blocks had the lowest variation in the built volume and density, and consequently the lowest variations in the roof areas with good solar exposition. The urban development also privileged more detached and less compact buildings. This analysis will support the integration of 2D and 3D information into the planning process, assisting smart cities to comply with the sustainable development goals.


2021 ◽  
Vol 10 (10) ◽  
pp. 709
Author(s):  
Deng Wang ◽  
Guoqin Zhang ◽  
Tao Lin ◽  
Xinyue Hu ◽  
Zhuoqun Zhao ◽  
...  

Continuous growth of building energy consumption CO2 emission (BECCE) threatens urban sustainable development. Urban form is an important factor affecting BECCE. Compactness is a significant urban morphological characteristic. There is currently a lack of research on the effect of urban three-dimensional (3D) compactness on BECCE. To clarify the research value of 3D compactness, we investigated whether 3D compactness has a stronger impact on BECCE than two-dimensional (2D) compactness. A total of 288 buildings of the People’s Bank of China (PBOC) were divided into 5 zones according to building climate demarcation. As BECCE is affected mainly by four aspects (socioeconomic condition, building features, macroclimate, and urban form), the BECCE driven by urban form (BECCE-f) in each zone was calculated firstly using the partial least square regression model. Normalized compactness index (NCI) and normalized vertical compactness index (NVCI) were calculated with Python to quantify urban 2D and 3D compactness within a 1 km buffer of PBOC buildings. The mean NCI and NVCI values of each zone were adopted as 2D and 3D compactness of this zone. Gray correlation analysis of the five zones showed that the connection between the NVCI and BECCE-f is stronger than that between NCI and BECCE-f. Based on this, we believe that the emphasis of later research should be shifted to urban 3D form, not just 2D elements. 3D form can describe the real urban form in a more accurate and detailed manner. Emphasizing 3D morphological characteristics in studies of the relationship between urban form and building energy performance is more meaningful and valuable than only considering 2D characteristics. The impact mechanism of urban form on BECCE-f should also be analyzed from the perspective of 3D form. This study also provides beneficial solutions to building energy saving and low-carbon building construction.


Optik ◽  
2019 ◽  
Vol 195 ◽  
pp. 163027 ◽  
Author(s):  
David Plets ◽  
Sander Bastiaens ◽  
Luc Martens ◽  
Wout Joseph ◽  
Nobby Stevens
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document