scholarly journals Experimental Investigation on the Static and Impact Behaviors of Basalt Fiber-Reinforced Concrete

2017 ◽  
Vol 11 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Hai Cao

Experimental studies on basalt fiber have been performed in China and abroad. Specifically, the compressive properties, flexural properties, splitting tensile properties and impact test behavior of chopped basalt fiber-reinforced concrete have been investigated. In addition, the effects of the mixing amount of fibers on the mechanical properties of C30 concrete were scrutinized, and the best mixing amount of fibers was obtained. The results indicate that the static and impact test behaviors of basalt fiber reinforced concrete significantly improved, and strengthening and toughening effects were achieved.

2019 ◽  
Vol 221 ◽  
pp. 01026
Author(s):  
Vasilii Plevkov ◽  
Konstantin Kudyakov

The article shows studies of bending basalt fiber reinforced concrete elements with pre-stressed glass composite reinforcement under static and short-term dynamic effects. Main results of numerical and experimental studies are presented. It is experimentally established and theoretically confirmed that a significant increase in the strength and crack resistance of the normal sections of concrete bent elements is observed when using basalt fiber reinforcement and pre-stressed glass composite reinforcement.


2013 ◽  
Vol 834-836 ◽  
pp. 726-729
Author(s):  
Hai Liang Wang ◽  
Lei Yuan

This paper studies on the influence of impermeability in basalt fiber of C50 concrete, and the result was compared with the same dosage of polypropylene fiber. Experimental test show that after incorporating basalt fiber and polypropylene fiber concrete impermeability resistance were significantly improved, the impermeability of polypropylene fiber is superior to basalt fiber.


2012 ◽  
Vol 598 ◽  
pp. 627-630 ◽  
Author(s):  
Ze Bao Kan ◽  
Yan Ru Li

The current research situation of basalt fiber reinforced concrete was analyzed on the basis of the previous research results. When concrete is incorporated with basalt fiber, the compressive performance of concrete is instable, the tensile strength changes along with the fiber content, but the durability improves significantly , and the bending performance and impact resistance has more obvious improvement. According to the characteristics of chopped basalt fiber reinforced concrete, the prospect of the application of basalt fiber reinforced concrete is explored.


2020 ◽  
Vol 864 ◽  
pp. 3-8
Author(s):  
Svitlana Berestianskaya ◽  
Evgeniy Galagurya ◽  
Olena Opanasenko ◽  
Anastasiia Berestianskaya ◽  
Ihor Bychenok

Fiber-reinforced concretes are varieties of composite materials. Such materials are commonly used nowadays. Concrete is fiber-reinforced using various fibrous materials, or fibers, which are evenly distributed over the volume of the concrete matrix and simultaneously provide its 3D reinforcement. Fiber-reinforced concrete has better stress-related strength characteristics than ordinary concrete. Since building structures must meet both the strength, rigidity and stability requirements, and the fire safety requirements, then for the extensive use of fiber-reinforced concrete structures, not only the external load design, but also temperature effect design should be conducted in the design phase. The strength and strain characteristics of fiber concrete exposed to high temperatures must be known for this purpose. In view of this, three series of prisms were manufactured and tested: the first series contained no fiber at all (control prisms), the second series contained basalt fiber, and the third series contained steel fiber. The test results showed that adding fibers improves the mechanical characteristics of fiber-reinforced concrete samples under specified conditions.


2021 ◽  
Vol 1038 ◽  
pp. 323-329
Author(s):  
Zlata Holovata ◽  
Daria Kirichenko ◽  
Irina Korneeva ◽  
Stepan Neutov ◽  
Marina Vyhnanets

The design of a stand for testing concrete and fiber-reinforced concrete specimens-"eight" in tension, which provides axial load application and minimizes the effect of stress concentration at the ends of the specimen. The design of the stand is such that the distance between the axis of load application and the central hinge is 108 cm, and between this hinge and the axis of the test specimen is 21 cm, as a result of which the load transferred to the specimen is 5.143 times greater than the applied one. At the first stage of testing, it was found that the optimal characteristics of the fiber-concrete mixture is a matrix with a large aggregate ≤ 10 mm with 1.0% fiber reinforcement. At the second stage, the ultimate strength of fiber-reinforced concrete for axial tension was determined - 1.28 MPa when reinforced with wave fiber and 1.37 MPa when reinforced with anchor fiber, which amounted to 4.1% and 4.4% of compressive strength, respectively. It was also found that concrete reinforced with anchor fiber has higher deformation properties than concrete reinforced with wave fiber.


Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document