scholarly journals Monitoring of Dynamic Strain Response in Concrete Structure Based on Piezoelectric Sensors

2017 ◽  
Vol 11 (1) ◽  
pp. 992-1002
Author(s):  
Lei Qin ◽  
Enrong Wang ◽  
Qi Qin ◽  
Taochun Yang ◽  
Feng Gao

Background: In this study, piezoelectric sensors were embedded into concrete structures to monitor dynamic response. The embedded piezoelectric sensors had sensitive frequency and linear response. Objective: In the experiment, two loading conditions were applied to the concrete cantilever beam and concrete frame. The dynamic properties could be monitored using the embedded sensors and the damage could also be identified.

2011 ◽  
Vol 97-98 ◽  
pp. 40-44 ◽  
Author(s):  
Chuan Yi Zhuang ◽  
Ai Qin Shen ◽  
Lin Wang

In order to evaluate pavement dynamic responses accurately under truck loading, the full-scale asphalt pavement accelerated loading facility (ALF) was used. 10 strain gauges and 2 soil pressure cells were installed; temperature sensors were also installed in the different depth of the HMA layer. Pavement response was measured under real traffic load with ALF. The measured pavement responses are compared between the pavement sections to evaluate the effects of various experimental factors, such as axle load, speed, et al. Dynamic strain at the bottom of HMA layer and vertical compressive stress on the top of the subgrade were examined in the full-scale testing road, the regression models between dynamic response and axle load, dynamic response and speed were put forward respectively. Studies show that there is not only tensile strain but also compressive strain in the dynamic response, and the strain response is in the station of tension and compression alternation. Under the intermediate temperature, the strain response at the bottom of the asphalt layer is increased linearly with the increase of axle load and the vertical compressive stresses at the top of the subgrade is also increased with the increase of axle load. Speed has a great effect on strain response at the bottom of HMA layer, and has little effect on vertical compressive stress, it affects the loading duration of stress only. The destroy for the pavement by low speed and heavy load is more serious than that is normal.


Author(s):  
Soumen Mondal ◽  
Sushanta Ghuku ◽  
Kashi Nath Saha

The present paper reports an experimental study on the effect of finite clamping on static and dynamic characteristics of cantilever beam. The experiment is carried out with two different beams, each of which is clamped at two different locations resulting in two different geometry settings. Under each of these four settings, specimen is clamped under two different torque ratings giving rise to different finite clamping effect. Under the eight settings, coordinates of tip point under static loading are measured directly using scales and plumb at each load step; whereas, complete deflection profiles of loaded beam under each static load step are obtained through post-processing of images captured during experimentation. Such image processing is carried out manually using AutoCAD®and in-built AutoLISP®software. Strain measurements at each static load step are carried out by using strain gauge, a universal data acquisition system and the associated Catman Easy®software. To obtain loaded free vibration characteristics, loaded beam under each setting is disturbed by a rubber hammer and its dynamic response is recorded from strain gauge signal through Catman Easy®software. These dynamic strain readings of loaded beam are post-processed and FFT plots are generated in MATLAB®software and first two loaded natural frequencies of beam under each setting are obtained. Finally, effects of clamping torques on the static strain and deflection results and loaded natural frequencies for beam settings with the four different thickness to length ratios are reported in a suitable manner. The result reported may be useful as ready reference to develop a theoretical model of clamped beam like structures incorporating the effect of finite clamping.


2015 ◽  
Author(s):  
Javad Baqersad ◽  
Peyman Poozesh ◽  
Christopher Niezrecki ◽  
Peter Avitabile

2014 ◽  
Vol 14 (08) ◽  
pp. 1440021
Author(s):  
Xiaoling Bai ◽  
Yumei Wen ◽  
Ping Li ◽  
Jin Yang ◽  
Xiao Peng ◽  
...  

Cantilever beams have found intensive and extensive uses as underlying mechanisms for energy transduction in sensors as well as in energy harvesters. In magnetoelectric (ME) transduction, the underlying cantilever beam usually will undergo magnetic coupling effect. As the beam itself is either banded with magnetic transducer or magnets, the dynamic motion of the cantilever can be modified due to the magnetic force between the magnets and ME sensors. In this study, the dynamic response of a typical spiral cantilever beam with magnetic coupling is investigated. The spiral cantilever acts as the resonator of an energy harvester with a tip mass in the form of magnets, and a ME transducer is positioned in the air gap and interacts with the magnets. It is expected that this spiral configuration is capable of performing multiple vibration modes over a small frequency range and the response frequencies can be magnetically tunable. The experimental results show that the magnetic coupling between the magnets and the transducer plays a favorable role in achieving tunable resonant frequencies and reducing the frequency spacings. This will benefits the expansion of the response band of a device and is especially useful in energy harvesting.


2020 ◽  
Vol 9 (12) ◽  
pp. 25260-25264
Author(s):  
Nanang Endriatno ◽  
Budiman Sudia ◽  
Raden Rinova Sisworo ◽  
Muhammad Faisal

The aim of the study was to analyze the dynamic response along an aluminum cantilever beam. The data measured were displacement (mm), velocity (mm / s), and acceleration (m/s2) with 3 variations of the measurement position on the beam. The 6061 series aluminum beam used have length: 80 cm, height: 32 cm, and width: 32 cm. Data were collected experimentally using a vibration meter to measure beam vibrations at the various positions from the cantilever beam at a distance from support: 10 cm, 35 cm, and 60 cm. The results of the analysis showed that the values ​​of the displacement, velocity and acceleration of the object vibrations change when the measuring point was far from the cantilever support. The maximum displacement value is at 60 cm from the support: 0.02 mm, and the lowest is at 10 cm: 0.12 mm. The velocity value also increases, maximum at 60 cm from the support: 38.58 mm/s and the minimum value at 10 cm: 12.30 mm/s. While the acceleration value, the maximum at 60 cm from the support: 91150 mm/s2 and the minimum at 10 cm: 66900 mm/s2.  


2010 ◽  
Vol 643 ◽  
pp. 113-118 ◽  
Author(s):  
Sergio Ricardo Kokay Morikawa ◽  
Daniel Pontes Lannes ◽  
Antonio Lopes Gama

This paper presents the results of an experimental investigation on the use of piezoelectric materials as a technique for monitoring the growth of defects in structures. The method consists of exciting the structure with piezoelectric actuators while recording the electromechanical responses from sensors placed close to the defect. The piezoelectric sensors detect the damage growth or an incipient defect by monitoring changes in the dynamic strain field, induced by the piezoelectric actuator, near the defect. This technique was evaluated through experiments using an aluminum frame structure. Results show that the piezoelectric active method is capable of detecting small changes in defect depth.


Author(s):  
Linna Li ◽  
Chenchen Fang ◽  
Dongwang Zhong ◽  
Li He ◽  
Jianfeng Si

The water medium explosion container is an experimental device that simulates explosion in different water depth environments by loading different hydrostatic pressures and different doses of explosive. To ensure its safety during service, it is necessary to study the dynamic response of water medium explosion container. Because the dynamic response is complicated and the correlation between the response and the load of the container is nonlinear, it is difficult to calculate the dynamic response by analytical and numerical methods. In this paper, a model is built based on convolutional neural network (CNN) to predict the dynamic response of water medium explosion container. The accuracy and usability of the CNN prediction model are verified by comparison with the prediction results of the BP neural network model. The results show that CNN can be effectively used to predict the strain response of the dynamic response of water medium explosion container. and this method will play an important role in the later study of the overall feature analysis of the dynamic response of the water medium explosion vessel.


2011 ◽  
Vol 314-316 ◽  
pp. 1876-1880
Author(s):  
Ai Xin Feng ◽  
Gui Feng Nie ◽  
Fen Shi ◽  
Chuan Chao Xu ◽  
Huai Yang Sun ◽  
...  

In order to study the dynamic response of metal of laser shock processing, dynamic strain curves of AM60 Magnesium alloy during laser shock processing were measured by resistance strain gauges. Dynamic strain curves of three equiangular rosette near the shock spot and three strain gauges of different distances from the spot center were studied. The results indicated that the strain rate of AM60 Magnesium alloy decreased and plastic deformation increased with increasing impact times. And one dimensional strain hypothesis of laser shock processing was reasonable.


Sign in / Sign up

Export Citation Format

Share Document