scholarly journals Development of In Vitro Denture Biofilm Models for Halitosis Related Bacteria and their Application in Testing the Efficacy of Antimicrobial Agents

2015 ◽  
Vol 9 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Tingxi Wu ◽  
Xuesong He ◽  
Hongyang Lu ◽  
David J Bradshaw ◽  
Alyson Axe ◽  
...  

Objective: Since dentures can serve as a reservoir for halitosis-causing oral bacteria, halitosis development is a concern for denture wearers. In this study, we surveyed the prevalence of four selected halitosis-related species (Fusobacterium nucleatum, Tannerella forsythia,Veillonella atypicaandKlebsiella pneumoniae) in clinical denture plaque samples, and developed denture biofilm models for these speciesin vitroto facilitate assessment of antimicrobial treatment efficacy.Design:Denture plaque from ten healthy and ten denture stomatitis patients was screened for the presence of aforementioned four species by PCR. Biofilm formation by these halitosis-associated species on the surfaces of denture base resin (DBR) discs was evaluated by crystal violet staining and confocal laser scanning microscopy. The efficacy of denture cleanser treatment on these mono-species biofilms was evaluated by colony counting.Results:80% of the subjects in the denture stomatitis group and 60% in the healthy group contained at least one of the targeted halitosis-related species in their denture plaque. All halitosis species tested were able to form biofilms on DBR disc surfaces to varying degrees. Thesein vitromono-species resin biofilm models were used to evaluate the efficacy of denture cleansers, which exhibited differential efficacies. When forming biofilms on resin surfaces, the halitosis-related species displayed enhanced resistance to denture cleansers compared with their planktonic counterparts.Conclusion:The four selected halitosis-related bacterial species examined in this study are present on the majority of dentures. The mono-species biofilm models established on DBR discs for these species are an efficient screening tool for dental product evaluation.

2020 ◽  
Vol 8 (5) ◽  
pp. 674 ◽  
Author(s):  
Dejana Lukic ◽  
Lamprini Karygianni ◽  
Manuela Flury ◽  
Thomas Attin ◽  
Thomas Thurnheer

Oral bacteria possess the ability to form biofilms on solid surfaces. After the penetration of oral bacteria into the pulp, the contact between biofilms and pulp tissue may result in pulpitis, pulp necrosis and/or periapical lesion. Depending on the environmental conditions and the availability of nutrients in the pulp chamber and root canals, mainly Gram-negative anaerobic microorganisms predominate and form the intracanal endodontic biofilm. The objective of the present study was to investigate the role of different substrates on biofilm formation as well as the separate and collective incorporation of six endodontic pathogens, namely Enterococcus faecalis, Staphylococcus aureus, Prevotella nigrescens, Selenomonas sputigena, Parvimonas micra and Treponema denticola into a nine-species “basic biofilm”. This biofilm was formed in vitro as a standard subgingival biofilm, comprising Actinomyces oris, Veillonella dispar, Fusobacterium nucleatum, Streptococcus anginosus, Streptococcus oralis, Prevotella intermedia, Campylobacter rectus, Porphyromonas gingivalis, and Tannerella forsythia. The resulting endodontic-like biofilms were grown 64 h under the same conditions on hydroxyapatite and dentin discs. After harvesting the endodontic-like biofilms, the bacterial growth was determined using quantitative real-time PCR, were labeled using fluorescence in situ hybridization (FISH) and analyzed by confocal laser scanning microscopy (CLSM). The addition of six endodontic pathogens to the “basic biofilm” induced a decrease in the cell number of the “basic” species. Interestingly, C. rectus counts increased in biofilms containing E. faecalis, S. aureus, P. nigrescens and S. sputigena, respectively, both on hydroxyapatite and on dentin discs, whereas P. intermedia counts increased only on dentin discs by addition of E. faecalis. The growth of E. faecalis on hydroxyapatite discs and of E. faecalis and S. aureus on dentin discs were significantly higher in the biofilm containing all species than in the “basic biofilm”. Contrarily, the counts of P. nigrescens, S. sputigena and P. micra on hydroxyapatite discs as well as counts of P. micra and T. denticola on dentin discs decreased in the all-species biofilm. Overall, all bacterial species associated with endodontic infections were successfully incorporated into the standard multispecies biofilm model both on hydroxyapatite and dentin discs. Thus, future investigations on endodontic infections can rely on this newly established endodontic-like multispecies biofilm model.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4958
Author(s):  
Jessa Marie V. Makabenta ◽  
Jungmi Park ◽  
Cheng-Hsuan Li ◽  
Aritra Nath Chattopadhyay ◽  
Ahmed Nabawy ◽  
...  

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


2011 ◽  
Vol 77 (10) ◽  
pp. 3413-3421 ◽  
Author(s):  
Rebecca Peyyala ◽  
Sreenatha S. Kirakodu ◽  
Jeffrey L. Ebersole ◽  
Karen F. Novak

ABSTRACTOral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novelin vitromodel system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprisingStreptococcus gordonii,Streptococcus oralis, andStreptococcus sanguinis;S. gordonii,Actinomyces naeslundii, andFusobacterium nucleatum; orS. gordonii,F. nucleatum, andPorphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.


Planta Medica ◽  
2021 ◽  
Author(s):  
Gemma C. Porter ◽  
Syarida H. Safii ◽  
Natalie J. Medlicott ◽  
Warwick J. Duncan ◽  
Geoffrey R. Tompkins ◽  
...  

AbstractManuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsionʼs antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lukas Simon Kriem ◽  
Kevin Wright ◽  
Renzo Alberto Ccahuana-Vasquez ◽  
Steffen Rupp

Techniques for continuously monitoring the formation of subgingival biofilm, in relation to the determination of species and their accumulation over time in gingivitis and periodontitis, are limited. In recent years, advancements in the field of optical spectroscopic techniques have provided an alternative for analyzing three-dimensional microbiological structures, replacing the traditional destructive or biofilm staining techniques. In this work, we have demonstrated that the use of confocal Raman spectroscopy coupled with multivariate analysis provides an approach to spatially differentiate bacteria in an in vitro model simulating a subgingival dual-species biofilm. The present study establishes a workflow to evaluate and differentiate bacterial species in a dual-species in vitro biofilm model, using confocal Raman microscopy (CRM). Biofilm models of Actinomyces denticolens and Streptococcus oralis were cultured using the “Zürich in vitro model” and were analyzed using CRM. Cluster analysis was used to spatially differentiate and map the biofilm model over a specified area. To confirm the clustering of species in the cultured biofilm, confocal laser scanning microscopy (CLSM) was coupled with fluorescent in vitro hybridization (FISH). Additionally, dense bacteria interface area (DBIA) samples, as an imitation of the clusters in a biofilm, were used to test the developed multivariate differentiation model. This confirmed model was successfully used to differentiate species in a dual-species biofilm and is comparable to morphology. The results show that the developed workflow was able to identify main clusters of bacteria based on spectral “fingerprint region” information from CRM. Using this workflow, we have demonstrated that CRM can spatially analyze two-species in vitro biofilms, therefore providing an alternative technique to map oral multi-species biofilm models.


Biofilms ◽  
2004 ◽  
Vol 1 (1) ◽  
pp. 5-12 ◽  
Author(s):  
J. S. Foster ◽  
P. C. Pan ◽  
P. E. Kolenbrander

Oral bacteria form mixed-species biofilms known as dental plaque. Growth of these complex microbial communities is often controlled with the use of antimicrobial mouthrinses. Novel laboratory methods for testing the efficacy of antimicrobials in situ are necessary to complement current clinical testing protocols. In this study, we examined the effects of antimicrobial agents on a streptococcal biofilm grown in a saliva-conditioned flowcell. The flowcell coupled with confocal laser scanning microscopy enabled examination of growing oral biofilms in situ without disruption of the microbial community. Biofilms composed of Streptococcus gordonii DL1 were grown in an in vitro flowcell and treated with several commercially available antimicrobial mouthrinses containing essential oils, triclosan, cetylpyridinium chloride/domiphen or chlorhexidine. The results of this study revealed varying abilities of the antimicrobial agents to cause cellular damage on the growing biofilm in situ. This study therefore demonstrated the usefulness of the flowcell in the rapid assessment of antimicrobial efficacy.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Jason L. Brown ◽  
Tracy Young ◽  
Emily McKloud ◽  
Mark C. Butcher ◽  
David Bradshaw ◽  
...  

Denture stomatitis (DS) is an inflammatory disease resulting from a polymicrobial biofilm perturbation at the denture surface–palatal mucosa interface. Recommendations made by dental health care professionals often lack clarity for appropriate denture cleaning. This study investigated the efficacy of brushing with off-the-shelf denture cleanser (DC) tablets (Poligrip®) vs. two toothpastes (Colgate® and Crest®) in alleviating the viable microorganisms (bacteria and fungi) in an in vitro denture biofilm model. Biofilms were grown on poly(methyl)methacrylate (PMMA) discs, then treated daily for 7 days with mechanical disruption (brushing), plus Poligrip® DC, Colgate® or Crest® toothpastes. Weekly treatment with Poligrip® DC on day 7 only was compared to daily modalities. All treatment parameters were processed to determine viable colony forming units for bacteria and fungi using the Miles and Misra technique, and imaged by confocal laser scanning microscopy (CLSM). Brushing with daily DC therapy was the most effective treatment in reducing the viable biofilm over 7 days of treatment. Brushing only was ineffective in controlling the viable bioburden, which was confirmed by CLSM imaging. This data indicates that regular cleansing of PMMA with DC was best for polymicrobial biofilms.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


2019 ◽  
Vol 5 (1) ◽  
pp. 85-97
Author(s):  
Nusrat Sharmin ◽  
Mohammad S. Hasan ◽  
Md. Towhidul Islam ◽  
Chengheng Pang ◽  
Fu Gu ◽  
...  

AbstractPresent work explores the relationship between the composition, dissolution rate, ion release and cytocompatibility of a series of borophosphate glasses. While, the base glass was selected to be 40mol%P2O5-16mol%CaO-24mol%MgO-20mol%Na2O, three B2O3 modified glass compositions were formulated by replacing Na2O with 1, 5 and 10 mol% B2O3. Ion release study was conducted using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The thermal scans of the glasses as determined by differential scanning calorimetry (DSC) revealed an increment in the thermal properties with increasing B2O3 content in the glasses. On the other hand, the dissolution rate of the glasses decreased with increasing B2O3 content. To identify the effect of boron ion release on the cytocompatibility properties of the glasses, MG63 cells were cultured on the surface of the glass discs. The in vitro cell culture study suggested that glasses with 5 mol% B2O3 (P40B5) showed better cell proliferation and metabolic activity as compares to the glasses with 10 mol% (P40B10) or with no B2O3 (P40B0). The confocal laser scanning microscopy (CLSM) images of live/dead stained MG63 cells attached to the surface of the glasses also revealed that the number of dead cells attached to P40B5 glasses were significantly lower than both P40B0 and P40B10 glasses.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


Sign in / Sign up

Export Citation Format

Share Document