scholarly journals Landlocked Fall Chinook Salmon Maternal Liver and Egg Thiamine Levels in Relation to Reproductive Characteristics

2017 ◽  
Vol 10 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Andrew Doyle ◽  
Michael E. Barnes ◽  
Jeremy L. Kientz ◽  
Micheal H. Zehfus

Object: Landlocked fall Chinook Salmon Oncorhynchus tshawytscha in Lake Oahe, South Dakota, typically experience poor reproductive success. Introduction: Salmon diets consist of rainbow smelt Osmerus mordax and other potentially thiaminase-containing fish that could impact reproduction. Methods: The thiamine levels of spawning female Salmon, eggs, and reproductive characteristics, were measured in 2000, 2001, 2002, 2003, and 2005. Results: Thiamine concentrations varied significantly from year-to-year, with the highest mean values recorded in 2001 at 8.70 nmol/g in maternal livers and 28.80 nmol/g in eggs. Most of the thiamine in the eggs was present as free thiamine, while most of the thiamine in maternal livers was present as thiamine pyrophosphate. The lowest recorded egg total thiamine level was 2.75 nmol/g in 2000. Egg survival to hatch ranged from 20.7% in 2005 to 35.4% in 2002, and was not correlated to egg thiamine levels. Twenty-two spawns experienced total mortality prior to hatch, and had significantly lower egg free thiamine and total thiamine concentrations than eggs from the 77 successful spawns. The eggs from spawns with total mortality were also significantly smaller than those eggs from spawns that did survive, and were produced by females that weighed significantly less. Several small, but significant, correlations were observed between egg size and egg thiamine levels, and female size and liver thiamine. There was also a significant negative correlation between the number of eggs per spawning female and egg thiamine pyrophosphate, liver thiamine monophosphate, and liver total thiamine levels. Conclusion: In general, Lake Oahe Chinook Salmon eggs show little indication of thiamine deficiency in the years sampled, indicating other factors are likely responsible for poor egg survival.

2014 ◽  
Vol 7 (1) ◽  
pp. 29-31 ◽  
Author(s):  
Matthew M. Wipf ◽  
Michael E. Barnes ◽  
Patrick A. Nero ◽  
Jill Voorhees

This study compared the survival of landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs incubated in either upwelling jars, either with or without daily formalin treatments, or vertically-stacked trays treated daily with formalin in a production hatchery. In the first year of the study, survival to the eyed-egg stage was significantly greater in eggs incubated in jars without formalin compared to trays, but there was no significant difference in survival to hatch between the treatments. In the second year, there were no significant differences in eggs incubated in trays, in jars without formalin treatments, and in jars with formalin treatments. In the final year, there was no significant difference in eyed-egg survival between eggs incubated in trays and jars without formalin, but survival to hatch was significantly greater in the eggs incubated in jars. Jar incubation is recommended to maximize the survival of landlocked fall Chinook salmon eggs.


2018 ◽  
Vol 7 (1) ◽  
pp. 31
Author(s):  
Holiday Robley ◽  
Michael E. Barnes

Digital color values were collected from the eggs of 128 spawns from individual landlocked fall Chinook salmon Oncorhynchus tshawytscha females from Lake Oahe, South Dakota, USA, in 2008, 2009, 2015 and 2016. For all spawns, the mean (SE) a* value, a measure of red-green chromaticness, was 10.99 (0.27), and ranged from 3.98 to 18.71. Mean (SE) b* (yellow-green) was 20.27 (0.32), and ranged from 9.28 to 28.50. Mean (SE) L* (white-black) was 20.73 (0.48), and ranged from 3.98 to 18.71. Egg total color index also showed considerable variation, with a mean (SE) of 23.05 (0.37) and range from 11.70 to 31.64. Egg survival to the eyed-stage was weakly, but significantly, correlated to b* (r = 0.206), L* (r = 0.185), Chroma (r = 0.211), and Entire Color Index (r = 0.211). Spawns with no egg survival had eggs with significantly lower a* values compared to spawns where at least some of the eggs survived to the eyed stage. L*, a*, b*, Chroma, and Entire Color Index varied significantly among the years, but Hue and egg survival to the eyed stage did not. The results of this study indicate a possible link between egg color and landlocked fall Chinook salmon egg survival, possibly due to differences in the diets of feral broodstock females or their ability to deposit bodily carotenoids in the developing eggs.


2013 ◽  
Vol 6 (1) ◽  
pp. 75-77 ◽  
Author(s):  
Patrick A. Nero ◽  
Michael E. Barnes ◽  
Matthew M. Wipf

This study evaluated the use of ovarian fluid turbidity as a potential indicator of landlocked fall Chinook Salmon Oncorhynchus tshawytscha egg survival. A total of 21 females were spawned, with nine of the spawns containing between one and ten broken eggs per spawn. Ovarian fluid turbidity ranged from 55.1 to 159 nephelometric turbidity units (NTU), and egg survival to the eyed-stage of egg development ranged from 0 to 68%. There was no significant correlation between ovarian fluid turbidity and egg survival. Mean survival of eggs from the spawns containing broken eggs was 12.3%, which was significantly lower than the 32.9% mean survival from spawns without broken eggs. These results indicate ovarian fluid turbidity cannot be used to predict egg survival in spawns of landlocked fall Chinook Salmon, but the presence of even a small number of broken eggs may be indicative of poor survival to the eyed-egg stage of development.


1971 ◽  
Vol 28 (5) ◽  
pp. 745-748 ◽  
Author(s):  
A. G. Ott ◽  
H. F. Horton

Techniques were developed that resulted in the fertilization of fresh eggs of spring chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) with sperm frozen 7 days in liquid nitrogen (−196 C). Maximum fertilities obtained were 38 and 79%, respectively. Best results for coho salmon were achieved when mannitol and dimethyl sulfoxide were included in the extender, and when no time was allowed for equilibration of the fresh sperm to the extender. This is the first success reported in preserving viable sperm of these two species at subfreezing temperatures.


1978 ◽  
Vol 35 (1) ◽  
pp. 69-75 ◽  
Author(s):  
D. F. Alderdice ◽  
F. P. J. Velsen

With data assembled from the literature, relations are examined between incubation temperature and rate of development from fertilization to hatching for chinook salmon (Oncorhynchus tshawytscha) eggs. Ten forms of three empirical relations are used, based on the thermal sums hypothesis, Bělehrádek's equation, and a form of the logistic curve. In each case comparisons are made using constant, ambient, and combined (constant + ambient) incubation temperatures. In most cases the rules of minimum variance curve fitting are somewhat violated, although results using the log-inverse form of Bělehrádek's equation are superior to those from the other models. Early imposition of low, constant incubation temperatures (below 6–7 °C) appears to slow egg development below those rates occurring at ambient temperatures having the same mean values. Time–temperature relations based on the unmodified thermal sums hypothesis and its associated "degree-days" are compared with predicted values obtained using the log-inverse Bělehrádek model as a standard. The former model tends to underestimate the length of the incubation period by an average of about 5 days at incubation temperatures above 4 °C; below 4 °C the former model increasingly overestimates the incubation period. Based on the log-inverse Bělehrádek model, a table is provided of predicted daily rates of development in relation to temperature. The table may be used to predict hatching time in a manner similar to that employing degree-days. In general, the enquiry points to a lack of data on development time at temperatures below 5 °C; to be meaningful, further analyses will require such data. Key words: prediction, modeling, development rates, hatching time


1992 ◽  
Vol 70 (7) ◽  
pp. 1341-1346 ◽  
Author(s):  
John D. Morgan ◽  
John O. T. Jensen ◽  
George K. Iwama

Metabolic rates, hatching success, alevin survival, time to hatch, and growth were measured for steelhead (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha) embryos incubated in salinities of 0, 4, 8, and 12 parts per thousand (ppt) from the eyed stage. Metabolic rates of eyed steelhead trout eggs, and chinook salmon eggs and alevins were not significantly affected by the salinities tested. The metabolic rate of newly hatched steelhead trout alevins, however, was significantly lower in 8-ppt, and significantly higher in 12-ppt, than in 0- and 4-ppt salinities. Egg hatchability was high in all four salinities, but newly hatched alevins of both species showed decreased survival and were smaller in 12-ppt salinity. Salinity effects on alevin survival and size were greater for steelhead trout than for chinook salmon. The results suggest that 8-ppt salinity is the upper limit for the normal development of steelhead trout and chinook salmon eggs and alevins.


2016 ◽  
Vol 7 (2) ◽  
pp. 347-358 ◽  
Author(s):  
David R. Geist ◽  
Alison H. Colotelo ◽  
Timothy J. Linley ◽  
Katie A. Wagner ◽  
Ann L. Miracle

Abstract Movement past hydroelectric dams and related in-river structures has important implications for habitat connectivity and population persistence in migratory fish. A major problem is that many of these structures lack effective fish passage facilities, which can fragment spawning and rearing areas and negatively impact recruitment. While traditional fish passage facilities (e.g., ladders, trap and haul) can effectively enable fish to pass over barriers, their capital or operational costs can be significant. We evaluated the utility of a novel transport device that utilizes a flexible tube with differential internal air pressure to pass fish around in-river barriers. We apportioned a total of 147 adult fall Chinook salmon (Oncorhynchus tshawytscha) nearing maturation to three treatments and a control group. In two of the treatments, adult fall Chinook salmon were transported through the device via two lengths of tube (12 or 77 m) and we compared their injury, stress, and immune system responses and reproductive function to a third treatment where fish were moved by a standard trap-and-haul method and also to a control group. We observed no significant differences among the treatment or control groups in posttreatment adult survival, injury, or stress. Indicators of immune system response and reproductive readiness were also not significantly different among the four groups. Egg survival was significantly different among the groups, with the highest survival in the eggs from females transported 77 m and lowest in the control group; the differences were highly variable within groups and not consistent with the duration of treatment or degree of handling. Taken together, the results suggest the device did not injure or alter normal physiological functioning of adult fall Chinook salmon nearing maturation and may provide an effective method for transporting such fish around in-river barriers during their spawning migration.


2002 ◽  
Vol 59 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Daniel D Heath ◽  
Colleen A Bryden ◽  
J Mark Shrimpton ◽  
George K Iwama ◽  
Joanne Kelly ◽  
...  

Correlations of various measures of individual genetic variation with fitness have been reported in a number of taxa; however, the genetic nature of such correlations remains uncertain. To explore this, we mated 100 male and 100 female chinook salmon (Oncorhynchus tshawytscha) in a one-to-one breeding design and quantified reproductive fitness and allocation (male gonadosomatic index, GSI; female fecundity; egg size; egg survival). Each fish was scored for allele size at seven microsatellite loci. We applied univariate and multivariate regression models incorporating two genetic variation statistics (microsatellite heterozygosity and squared allelic distance, d2) with reproductive parameters. The majority of the relationships were found to be nonsignificant; however, we found significant, positive, univariate relationships for fecundity and GSI (25% of tests) and significant, multivariate relationships at individual loci for all four traits (13% of tests). One microsatellite locus, Omy207, appeared to be closely associated with reproductive fitness in female chinook salmon (but not male), based on the multivariate analysis. Although direct tests for overdominance versus inbreeding effects proved inconclusive, our data are consistent with the presence of both inbreeding (general) and overdominance (local) effects on reproductive traits in chinook salmon.


1992 ◽  
Vol 14 ◽  
pp. 81-89 ◽  
Author(s):  
ML Kent ◽  
J Ellis ◽  
JW Fournie ◽  
SC Dawe ◽  
JW Bagshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document