Determination of solute-solute and solute-solvent interaction of pyrimidine5-carbonitrile in aqueous DMSO at 298.15 K.

2020 ◽  
Vol 10 ◽  
Author(s):  
Jayraj S. Aher ◽  
Anant V. Kardel ◽  
Dnyneshawar D. Lokhande ◽  
Manoj R. Gaware ◽  
Arun M. Bhagare

Introduction: In this reported work, we have used 80 % aqueous dimethyl sulphoxide (DMSO) for density and viscosity measurement of pyrimidine-5-carbonitrile at 298.15 K. The obtained experimental results shows that as concentration increases density and viscosity increases. From the results of density and viscosity, we have found apparent molar volume, limiting apparent molar volume, semi-empirical parameters, Falkenhagen coefficients and Jones Dole coefficients. Method: The apparent molar volume and limiting apparent molar volume having negative values indicated electostrictive solvation of ions and weak or absence of ion solvent interactions respectively. Result & Discussion : Falkenhagen coefficients is independent of concentration having positive value has shown strong solute-solute interactions and Jones-Dole coefficients having negative value has shown weak solute-solvent interactions. The strong solute-solute interactions were presents in A-1 as compared to A-2 compound because high electronegativity of oxygen atom. These parameters had given idea about molecular interactions such as solute-solute, solute-solvent and solvent-solvent. Conclusion: We have reported density and viscosity study of 4-amino-2-hydroxy-6-phenylpyrimidine-5-carbonitrile and 4- amino-2-mercapto-6-phenylpyrimidine-5-carbonitrile in 80 % aqueous DMSO solution at 298.15 K temperature. It has been observed that Strong molecular association in A-2 as compared to A-1 due to negative values of Øv.

2021 ◽  
Vol 12 (3) ◽  
pp. 3956-3965

Understanding possible interactions of drugs and the factors that command such interactions could be helpful to control their disadvantageous effects upon human health. In this study, volumetric properties for the solution of diclofenac potassium (DP), a non-steroidal anti-inflammatory drug (NSAID), were investigated for the first time to look into its molecular interactions at four different temperatures varying from 298.15 K to 313.15 K at 5 K intervals in water as well as aqueous hydrotropic agent urea (1M) solutions. Experimental density data obtained using a pycnometer have been taken to estimate apparent molar properties, i.e., limiting apparent molar volume (〖V_ɸ〗^0), apparent molar volume (V_ɸ), limiting apparent molar expansibility (〖E_ɸ〗^0) and apparent molar expansibility (E_ɸ). The results obtained were discussed in terms of solute-solvent and solute-solute interactions in the studied systems. The obtained results from volumetric data were explored in terms of the existence of solute-solvent interactions in aqueous systems of drug solutions.


2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


2021 ◽  
Vol 33 (6) ◽  
pp. 1403-1408
Author(s):  
Jayraj Aher ◽  
Arun Bhagare ◽  
Manoj Gaware ◽  
Dnyaneshwar Lokhande ◽  
Anant Kardel ◽  
...  

In present work, the concentration and temperature dependence of the thermodynamic properties of 3-substituted Schiff base of 4-piperidyl N-(4-chlorophenyl)maleimide compound in 80% DMSO was estimated. Concentration (0.002-0.01 M) and temperature (298-313 K) dependent densitometric and viscometric measurement were employed to evaluate limiting molar volume (φv 0), semi-empirical parameter (Sv), Falkenhagen (A) and Jones-Dole (B) viscosity coefficient. The obtained results suggest the presence of weaker solute-solvent interactions and stronger solute-solute interactions. It was observed that these interactions strongly depend on the temperature of the system. Furthermore, the Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of the system were also evaluated. The negative values of ΔG and ΔH and positive values of ΔS indicating reaction was spontaneous and exothermic in nature.


2020 ◽  
Vol 10 (01) ◽  
pp. 170-174 ◽  
Author(s):  
Sundus H. Merza ◽  
Nagham H. Abood ◽  
Ahamed M. Abbas

The interactions of drug amoxicillin with maltose or galactose solutions with a variation of temperature have been discussed by taking in the volumetric and viscometric procedures. Physical properties [densities (ρ) and viscosities (η)] of amoxicillin (AMOX) aqueous solutions and aqueous solutions of two type saccharides (maltose and galactose 0.05m) have been measured at T = (298.15, 303.15 and 308.15) K under atmospheric pressure. The apparent molar volume (ϕv cm3mole-1) has been evaluated from density data and fitted to a Redlich-Mayer equation. The empirical parameters of the Mayer-Redlich equation and apparent molar volume at infinite dilution Ø°v were explicated in terms of interactions from type solute-solvent and solute–solute interactions. Transfer molar volume ΔtraØ°v for AMOX from water to aqueous maltose and galactose solutions were calculated to comprehend different interactions in the ternary solutions. Limiting apparent molar expansibility (Ø°E) and Hepler’s coefficient was also calculated to indicate the structure making ability of AMOX in the ternary solutions. Jones–Dole coefficient B and A have been calculated from viscosity data by employing the Jones–Dole equation. The free energy of activation of viscous flow per mole of the solute (Δμ°2*) and solvent (Δμ°1*) have been explained on the basis of the Eyring and Feakins equation.


2021 ◽  
Vol 2 (1) ◽  
pp. 30-36
Author(s):  
Yasmin Akhtar

Densities and viscosities of binary and ternary electrolytes solution have been determined experimentally at 298.15 K.  The results obtained from density and viscosity measurement have been used to calculate apparent molar volume φv partial molar volume φov at infinite dilution, relative viscosities hrel, A and B coefficients, and free energies of activation of viscous flow of solvent Δ µ10# and solute Δ µ20. The results are discussed in terms of the dehydration effect of the weak ion-ion and strong ion-solvent interactions. The properties of these systems are discussed in terms of the charge, size, and hydrogen bonding effect.


2020 ◽  
Vol 10 (4) ◽  
pp. 5901-5909 ◽  

The viscosity and density of barium chloride have been measured at T= (298.15-313.15) K in aqueous solutions of 1, 4-Dioxane (1,4-DO) and Ethylene glycol (EG). Jones–Dole equation was used to analyze the viscosity data. The apparent molar volume, V_ϕ limiting apparent molar volume, V_ϕ^0 are calculated from the density data. Limiting apparent molar expansibilities, E_ϕ^0 have been used to describe the temperture dependency of V_ϕ^0. The standard volume of transfer, ΔtV_ϕ^0 and viscosity B-coefficient of transfer, ΔtB of barium chloride from water to aqueous 1, 4-DO and EG solutions were systematizing the different types of interactions in the given solutions. The structure making and breaking capacity of solute in solutions was interpreted with the help of Helper equation. The positive value of (∂2V_ϕ^0/∂T2)p suggests the structure making nature for BaCl2 in given solution. It is observed that Friedman-Krishnan co-sphere model explains the increase in the transfer volume of BaCl2 with an increase in 1,4-DO and EG concentrations. The activation parameters of the viscous flow of the given solutions were calculated and interpreted using transition state theory.


2018 ◽  
Vol 34 (4) ◽  
pp. 1755-1764 ◽  
Author(s):  
Roksana Khatun ◽  
Rajia Sultana ◽  
Ranjit K. Nath

The observations on the anomalous behavior of urea and the comparison between urea and thiourea in aqueous solutions have been examined by volumetric and ultrasonic sound velocity techniques at different temperature (298.15, 303.15, 308.15, 313.15, 318.15 and 323.15 K) , atmospheric pressure by using a high accuracy vibrating U-tube digital density and ultrasonic sound velocity analyzer. The apparent molar volume (ϕv) & apparent molar adiabatic compressibility (ϕk) have been calculated from experimental density and ultrasonic sound velocity data respectively and limiting apparent molar volume (ϕv0), limiting apparent molar adiabatic compressibility (ϕk0) have been evaluated from apparent molar volume vs. molality plot as intercept. Apparent molar expansibility (ϕE) was determined from apparent molar volume and hydration number (nH) from adiabatic compressibility. The results show very interesting information about strong solute-solvent & solute-solute interactions, and also elaborate the structure making or breaking behavior in the solution mixtures.


2011 ◽  
Vol 3 (2) ◽  
pp. 437-444 ◽  
Author(s):  
D. C. Kabiraz ◽  
T. K. Biswas ◽  
M. N. Islam ◽  
M. E. Huque

The viscosities and densities of potassium chloride, potassium nitrate, magnesium chloride, and magnesium nitrate have been measured at 303.15, 308.15, 313.15, 318.15 and 323.15 K in aqueous solution. The viscosity data were analyzed by using Jones–Dole equation. The values of apparent molar volume, limiting apparent molar volume have been evaluated from the density data. The results were interpreted in the light of ion–ion and ion–solvent interactions and of structural effects of the solutes in solution.Keywords: Density; Apparent molar volume; Viscosity; Jones–Dole equation.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v2i2.6288                J. Sci. Res. 3 (2), 437-444 (2011)


Sign in / Sign up

Export Citation Format

Share Document