Flow Analysis and Experimental Investigation on Micro Electrochemical Drilling of Deep Micro-Holes

2017 ◽  
Vol 10 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Chunsheng Guo ◽  
Yong Liu ◽  
Zhiyuan Wei ◽  
Jingran Niu
2021 ◽  
pp. 2150102
Author(s):  
MAYANK CHOUBEY ◽  
K. P. MAITY

The increasing trends towards miniaturized and lightweight components for various engineering and aerospace applications by unconventional machining the demand for micro-electrical discharge machining (EDM) have become increasingly wide. Micro-EDM is one of the most promising unconventional machining processes as compared to other unconventional machining due to its lower cost, ease of operation, and accuracy. This research explores the experimental investigation of micro-EDM operation on hard and difficult to machine material Inconel 718. The micro-holes were fabricated on an Inconel 718 workpiece with a copper electrode. The influence of input process parameters on material removal rate (MRR), machining time, and quality of the fabricated micro-holes were studied. Overcut and taperness of the fabricated micro-sized through holes were measured to address the accuracy of the fabricated micro-holes in micro-EDM operation. Experimental results reveal that the increase in current and voltage increases the MRR, and reduced machining time but at the cost of dimensional accuracy of the fabricated holes. The high value of current and voltage resulted in poor surface quality. The optimum machining condition that gives higher MRR with higher machining precision was obtained by experimenting while machining Inconel 718.


2015 ◽  
Vol 813-814 ◽  
pp. 332-336
Author(s):  
R.A. Aravind ◽  
Shivakumar Ganesh ◽  
Syed Mohammed Yasir ◽  
G. Madhan Mohan ◽  
Vijayan Krishnaraj ◽  
...  

This paper presents an experimental study on the diametrical overcut and taper obtained during the machining of micro holes by electro-discharge machining (EDM). Many trials were taken by machining a 2.0 mm electrolytic copper rod to 0.50 mm under various conditions to analyse the effect of process parameters by wire electric discharge grinding process (WEDG). The optimum process parameters were determined by Taguchi’s method. Then a set of electrodes were produced with the determined optimum process parameters and were used to machine micro holes on Ti-6Al-4V alloy. The diameters of the holes were measured and the effects of various parameters were analysed for the variation in taper and diametrical overcut. The experimental results were analysed using analysis of variance approach.


2013 ◽  
Vol 567 ◽  
pp. 21-26 ◽  
Author(s):  
Zhi Yong Li ◽  
Zong Wei Niu ◽  
Li Li

Electrochemical micro-machining (EMM) has become one of the main machining methods for production of miniaturized parts and components. Utilizing the developed EMM set-up, the effects of ultrasonic wave frequency on characteristics of localized dissolution and accuracy of micro-hole in EMM are investigated and evaluated. The experiment results demonstrate that the accuracy of micro-hole and characteristics of localized dissolution can become better with the increase of ultrasonic wave frequency. The accuracy of micro-hole machined by 26KHZ can improve about 30% than that by 16KHZ. Moreover, the ability of localized dissolution by 26KHZ can be increased about 27%-30%.


2020 ◽  
pp. 004051752098258
Author(s):  
Malik YH Saty ◽  
Nicholus Tayari Akankwasa ◽  
Jun Wang

The compact spinning system with a lattice apron utilizes air-flow dynamics to condense fibers in a bunch and enhance the yarn properties. One of the main challenges with this method is the lack of a comprehensive understanding of the air-flow field's effect in the condensing zone. This work presents a numerical and experimental investigation of the effects of three-dimensional (3D) printed guiding devices on the air-flow characteristics and yarn properties. Firstly, the 3D numerical model of the compact spinning system was set up based on the compact spinning machine geometrical dimensions. Secondly, different 3D prototypes were developed, simulated, and analyzed using computational fluid dynamics based on ANSYS software. The prototypes (A-type, B-type, and C-type), selected according to the simulation results, were then 3D printed to enable further experimental investigation. Air-flow analysis results in the air-suction flume area exhibiting a very high negative pressure, and the centerline zone was characterized by high velocity. Experimental results revealed that the three yarns spun with guiding devices had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes and is anticipated to improve compact spun yarn properties significantly.


Sign in / Sign up

Export Citation Format

Share Document