Strategies for Development of High-Performance Graphene-Based Supercapacitor

2020 ◽  
Vol 3 (1) ◽  
pp. 2-10
Author(s):  
Mário César Albuquerque de Oliveira ◽  
Helinando Pequeno de Oliveira

The development of high-performance supercapacitors requires efforts in materials design and nanotechnology to provide more efficient electrodes with higher electrochemical window, capacitance, energy and power density. In terms of candidates for electrodes, the high surface area of graphene (2630 m2g-1) makes this carbon derivative a widely explored building block for supercapacitor electrodes. Herein, it is presented a review about the state-of-art in surface modification of graphene derivatives with the aim of avoiding restacking processes in nanosheets. It allows that Faradaic and non-Faradaic mechanisms can be synergically explored to reach not only superior results in power density but in energy density, a typical drawback in supercapacitors (by comparison with conventional batteries), introducing graphene-based supercapacitors as promising candidates for energy storage devices.

2021 ◽  
Vol 22 (9) ◽  
pp. 4498
Author(s):  
Md. Motiar Rahman ◽  
Mst Gulshan Ara ◽  
Mohammad Abdul Alim ◽  
Md. Sahab Uddin ◽  
Agnieszka Najda ◽  
...  

Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.


2021 ◽  
Vol 44 (1) ◽  
pp. 129-140
Author(s):  
Agha Kashif ◽  
Sumaira Aftab ◽  
Muhammad Javaid ◽  
Hafiz Muhammad Awais

Abstract Topological index (TI) is a numerical invariant that helps to understand the natural relationship of the physicochemical properties of a compound in its primary structure. George Polya introduced the idea of counting polynomials in chemical graph theory and Winer made the use of TI in chemical compounds working on the paraffin's boiling point. The literature of the topological indices and counting polynomials of different graphs has grown extremely since that time. Metal-organic network (MON) is a group of different chemical compounds that consist of metal ions and organic ligands to represent unique morphology, excellent chemical stability, large pore volume, and very high surface area. Working on structures, characteristics, and synthesis of various MONs show the importance of these networks with useful applications, such as sensing of different gases, assessment of chemicals, environmental hazard, heterogeneous catalysis, gas and energy storage devices of excellent material, conducting solids, super-capacitors and catalysis for the purification, and separation of different gases. The above-mentioned properties and physical stability of these MONs become a most discussed topic nowadays. In this paper, we calculate the M-polynomials and various TIs based on these polynomials for two different MONs. A comparison among the aforesaid topological indices is also included to represent the better one.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Luo ◽  
Maoxin Chen ◽  
Jinhui Cao ◽  
Meng Zhang ◽  
Shan Tan ◽  
...  

AbstractPotassium-ion hybrid capacitors (KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors. The development of KIHCs is subject to the investigation of applicable K+ storage materials which are able to accommodate the relatively large size and high activity of potassium. Here, we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon (SHPNC). The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling, but also provides sufficient void space to relieve volume expansion of electrode and improves its stability. Therefore, KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg−1 (calculated based on the total mass of anode and cathode), long lifespan, and ultrafast charge/slow discharge performance. This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.


2018 ◽  
Vol 6 (17) ◽  
pp. 8053-8058 ◽  
Author(s):  
Jian Hao ◽  
Jiemin Wang ◽  
Si Qin ◽  
Dan Liu ◽  
Yinwei Li ◽  
...  

A novel B/N co-doped carbon nanospheres framework is synthesized by a facile, economic, environmental and scalable method. The as-obtained materials display extra-high capacitive performance and exceptional long cycle stability with the merits of high energy and power density. We believe that this material will be applicable in the application of integrated energy storage devices.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Soochan Kim ◽  
Simindokht Shirvani-Arani ◽  
Sungsik Choi ◽  
Misuk Cho ◽  
Youngkwan Lee

AbstractLi–S batteries have attracted considerable interest as next-generation energy storage devices owing to high energy density and the natural abundance of sulfur. However, the practical applications of Li–S batteries are hampered by the shuttle effect of soluble lithium polysulfides (LPS), which results in low cycle stability. Herein, a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3N4 (t-C3N4) embedded with Fe3O4 nanospheres. t-C3N4 exhibits high surface area and strong anchoring of LPS, and the Fe3O4/t-C3N4 accelerates the anchoring of LPS and improves the electronic pathways. The combination of these materials leads to remarkable battery performance with 400% improvement in a specific capacity and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles, and stable cycling at 6.4 mg cm−2 for high-sulfur-loading cathode.


2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Wenbo Wang ◽  
Yanhong Shi ◽  
Yang Su ◽  
Yihai Wang ◽  
Haizhu Sun

Developing lithium ion capacitors possessing both brilliant energy and power density is still significant for numerous re-searchers. In this paper, we synthesized MnO2 nanowires via a simple hydrothermal process. The nanostructure MnO2 can expose more electrochemical sites and thus optimize the kinetics of Li+. Moreover, we used MnO2 nanowires (MnO2 NWs) as anode and a N-doped porous carbon (NPC) as cathode to assemble lithium ion capacitors (MnO2 NWs//NPC LIC). Compared to the traditional supercapacitor with aqueous electrolyte, the MnO2 NWs//NPC LIC exhibits a wider voltage of 0-4.2 V, which is helpful to enhance its energy and power density. Furthermore, MnO2 NWs//NPC LIC can deliver an excellent capacity of 150 mAh g-1 with an excellent energy density of 82.7 Wh kg-1 and power density of 1.05 kW kg-1. Meanwhile, a good cyclic stability of LICs with a 20% retention after 1000 times charge and discharge process proves its practical potential, indicating a good promising for the application in storage devices.


2020 ◽  
Vol 43 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Hafiz Muhammad Awais ◽  
Muhammad Jamal ◽  
Muhammad Javaid

AbstractMetal-organic frameworks (MOFs) are porous materials formed by strong bonds between metal ions and organic ligands to represent very high surface area, large pore volume, excellent chemical stability and unique morphology. Work on synthesis, structures and characteristics of many MOFs shows the importance of these frameworks with versatile applications, such as energy storage devices of excellent electrode materials, gas storage, heterogeneous catalysis, environmental hazard, assessment of chemicals and sensing of different gases. A topological property or index is a numerical invariant that predicts the physicochemical properties of the chemical compounds of the underlying molecular graph or framework. Wiener (1947) created the practice of the topological indices (TI’s) in organic molecules with the reference of boiling point of paraffin. In this paper, we study the two different metal-organic frameworks with respect to the number of increasing layers with metal and organic ligands as well. We also compute the generalized Zagreb index and generalized Zagreb connection index of these frameworks. Moreover, the various indices and connection indices are obtained by using the aforesaid generalized versions. At the end, a comparison is also included between the indices and connection indices with the help of numerical values and their 3D plots.


Sign in / Sign up

Export Citation Format

Share Document