scholarly journals Targeted Anti-Cancer Therapy, Acquiring and Overcoming Multi-Drug Resistance

2009 ◽  
Vol 3 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Tim Kwok ◽  
Siu Kong ◽  
Ming Li ◽  
Ho Ho ◽  
Bao Yu ◽  
...  

2019 ◽  
pp. 1-6 ◽  
Author(s):  
HARISH KADKOL ◽  
VIKAS JAIN ◽  
AMIT PATIL*

2016 ◽  
Vol 4 (42) ◽  
pp. 6856-6864 ◽  
Author(s):  
Jue Tuo ◽  
Yanqi Xie ◽  
Jia Song ◽  
Yizhen Chen ◽  
Qin Guo ◽  
...  

A novel berberine-mediated mitochondria-targeting nano-platform was constructed to inhibit tumor growth and bypass the multi-drug resistance problem by targeting doxorubicin to mitochondria of tumor cells.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4363 ◽  
Author(s):  
Christiana M. Neophytou ◽  
Ioannis P. Trougakos ◽  
Nuray Erin ◽  
Panagiotis Papageorgis

The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.


Author(s):  
Meenakshi Negi ◽  
Pooja Chawla ◽  
Abdul Faruk ◽  
Viney Chawla

Background: Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. Objective: The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. Methods: An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. Conclusion: This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.


2005 ◽  
Vol 4 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Jaspreet K. Vasir ◽  
Vinod Labhasetwar

Chemotherapy has been the main modality of treatment for cancer patients; however, its success rate remains low, primarily due to limited accessibility of drugs to the tumor tissue, their intolerable toxicity, development of multi-drug resistance, and the dynamic heterogeneous biology of the growing tumors. Better understanding of tumor biology in recent years and new targeted drug delivery approaches that are being explored using different nanosystems and bioconjugates provide optimism in developing successful cancer therapy. This article reviews the possibilities and challenges for targeted drug delivery in cancer therapy.


2009 ◽  
Vol 12 (1) ◽  
pp. 46 ◽  
Author(s):  
Tripta Bansal ◽  
Manu Jaggi ◽  
Roop Khar ◽  
Sushama Talegaonkar

Chemotherapy forms the mainstay of cancer treatment particularly for patients who do not respond to local excision or radiation treatment. However, cancer treatment by drugs is seriously limited by P-glycoprotein (P-gp) associated multi-drug resistance (MDR) in various tumor cells. On the other hand, it is now widely recognized that P-gp also influences drug transport across various biological membranes. P-gp transporter is widely present in the luminal surface of enterocytes, biliary canalicular surface of hepatocytes, apical surface of proximal tubular cells of kidney, endothelial cells of blood brain barrier, etc. thus affecting absorption, distribution, metabolism and excretion of xenobiotics. Clinical significance of above mentioned carrier is appreciated from the fact that more than fifty percent of existing anti-cancer drugs undergo inhibitable and saturable P-gp mediated efflux. Consequently, there is an increasing trend to optimize pharmacokinetics, enhance antitumour activity and reduce systemic toxicity of existing anti-cancer drugs by inhibiting P-gp mediated transport. Although a wide variety of P-gp inhibitors have been discovered, research efforts are underway to identify the most appropriate one. Flavonoids (polyphenolic herbal constituents) form the third generation, non-pharmaceutical category of P-gp inhibitors. The effects produced by some of these components are found to be comparable to those of well-known P-gp inhibitors verapamil and cyclosporine. Identification of effective P-gp modulator among herbal compounds have an added advantage of being safe, thereby making them ideal candidates for bioavailability enhancement, tissue-penetration (e.g. blood brain barrier (BBB)), decreasing biliary excretion and multi-drug resistance modulating agents. The dual effects, i.e. P-gp modulation and antitumor activity, of these herbal derivatives may synergistically act in cancer chemotherapy. This paper presents an overview of the investigations on the feasibility and application of flavonoids as P-gp modulators for improved efficacy of anti-cancer drugs like taxanes, anthracyclines, epipodophyllotoxins, camptothecins and vinca alkaloids. The review also focuses on flavonoid-drug interactions as well as the reversal activity of flavonoids useful against MDR. In addition, the experimental models which could be used for investigation on P-gp mediated efflux are also discussed.


2009 ◽  
Vol 3 (1) ◽  
pp. 409-419 ◽  
Author(s):  
Rebecca K.Y. Lee ◽  
Rose C.Y. Ong ◽  
Jenny Y.N. Cheung ◽  
Yan C. Li ◽  
Judy Y.W. Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document