Molecular Markers for the Evaluation of Clonal Fidelity in Medicinal Plants

Medicinal plants are major sources of secondary metabolites for which they have been paid more attention by pharmaceutical industries. In order to produce these secondary metabolites, medicinal plants are cultivated and for that plant tissue or organ, culture can be a suitable alternative. However, these plants are treated with plant hormones and elicitors to enhance the secondary metabolites and such elicitation may lead to genetic or epigenetic changes which are known as somaclonal variations. Thus, a stringent method of monitoring is required to observe the true-to-types of these medicinal plants when multiplied through tissue culture. Molecular markers like Randomly Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeat (ISSR), and Simple Sequence Repeats (SSR) are highly suitable markers to assess clonal fidelity in micropropagated medicinal plants. In the present chapter, the execution of such markers to check somaclonal variations in tissue culture raised medicinal plants is discussed in detail.

2021 ◽  
Vol 16 (11) ◽  
pp. 147-154
Author(s):  
Anjali Uniyal ◽  
Akhilesh Kumar ◽  
Sweta Upadhyay ◽  
Vijay Kumar ◽  
Sanjay Gupta

The Rheum species are important medicinal plants that are facing extinction due to their unplanned development and overexploitation by pharmaceutical industries. DNA polymorphisms are not prone to environmental modifications, thus they are widely used for the identification and characterization of plants. The use of different molecular markers has enabled the researchers for the valuation of genetic variability and diversity in its natural zone of distribution. The conventional approach may take several years to yield this information. For the estimation of molecular and genetic variations in geographical zone of distribution, various molecular markers technique are available like RAPD (Randomly Amplified Polymorphic DNA), RFLP (Restriction fragment length polymorphism), ISSR (Inter-Simple Sequence Repeats), SSR and AFLP. The uses of different molecular markers for the study of genetic diversity have been discussed in the review.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 313
Author(s):  
Karma Yeshi ◽  
Darren Crayn ◽  
Edita Ritmejerytė ◽  
Phurpa Wangchuk

Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: “stress-affected plants,” “plant secondary metabolites, “abiotic stress,” “climatic influence,” “pharmacological activities,” “bioactive compounds,” “drug discovery,” and “medicinal plants” and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.


2020 ◽  
Vol 21 (2) ◽  
Author(s):  
ALFI FAUZAN IRSYAD ◽  
Ridesti Rindyastuti ◽  
TITUT YULISTYARINI ◽  
AGUNG SRI DARMAYANTI ◽  
BUDI SETIADI DARYONO

Abstract. Irsyad AF, Rindyaastuti R, Yulistyarini T, Darmayanti AS, Daryono BS. 2020. Genetic variation of agarwood producing tree (Gyrinops versteegii) from Pongkor, Manggarai District, Flores Island, Indonesia using ISSR molecular markers. Biodiversitas 21: xxxx. Agarwood is a black-colored tree wood that produces distinctive sap because of fungal infections which belong to Thymelaeaceae family (mainly Aquilaria and Gyrinops). Agarwood product is highly valuable that leading to over exploitations by the collectors. To develop the most effective and efficient conservation strategies, genetic information from these plants is required. The aims of this research are to determine the genetic variation and to confirm the species identity of agarwood producing tree (Gyrinops versteegii (Gilg.) Domke) population in Pongkor Community Forest, Pongkor, Manggarai District, Flores Island, East Nusa Tenggara. Information of the genetic variation, as well as the phenetic relatedness, were evaluated with inter-simple sequence repeat molecular marker (ISSR) using five primers; Ng2.01, Ng2.06, Ng3.01, Ng3.02, and UBC 855, with two other agarwood producing species as outgroup (Aquilaria filaria and Gyrinops decipiens). Amplified bands from all primers showed 55.17% polymorphic bands in G. versteegii. Genetic variation of G. versteegii identified with Nei’s genetic diversity (h value) obtained at 0.218. Clustering analysis from UPGMA dendrograms formed three major clusters. Degree of similarity of G. versteegii based on the dendrograms obtained at 85.9% using SSM method. The results showed close phenetic relatedness between individuals and relatively high genetic variation of G. versteegii, however, imply the need for strictly maintenance of habitat preservation and larger population size.


2011 ◽  
Vol 25 (1) ◽  
pp. 223-233 ◽  
Author(s):  
Laxmikanta Acharya ◽  
Arup Kumar Mukherjee ◽  
Pratap Chandra Panda

Random amplified polymorphic DNA (RAPD), Inter simple sequence repeat (ISSR) and Amplified fragment length polymorphism (AFLP) markers were used to verify the segregation of the genus Cassia L. senso lato into three distinct genera namely Chamaecrista Moench., Senna P. Mill. and Cassia L. sensostricto Eighteen representatives of the three taxa were characterized using the molecular markers. 25 RAPD, six ISSR primers and six AFLP primer combinations resulted in the amplification of 612, 115 and 622 bands (loci) respectively. Most of the loci are found to be polymorphic, showing high degrees of genetic diversity among the different taxa studied. The dendrogram constructed on the basis of the RAPD, ISSR and AFLP data using SHAN clustering, divided Cassia L. senso lato. into three different clusters as Chamaecrista Moench. Senna P. Mill. and Cassia L. senso stricto High bootstrap value revealed that all the clusters were stable and robust. It was observed from the present investigation that these genera have their identity at molecular level, which supports the elevation of the genus Cassia L. senso lato to the level of subtribe Cassiinae and segregation into three distinct genera instead of intrageneric categories.


2018 ◽  
Vol 27 (2) ◽  
pp. 165
Author(s):  
Farida Yulianti ◽  
Hidayatul Arisah ◽  
Dita Agisimanto

<p>Protokol organogenesis untuk perbanyakan plantlet Citrumelo menggunakan metode transverse thin cell layer (tTCL) batang telah berhasil dikembangkan. Identifikasi stabilitas genetik tanaman hasil kultur jaringan mutlak diperlukan untuk menguji keberadaan off-type. Tujuan penelitian adalah untuk mengetahui potensi primer retrotransposon dan inter simple sequence repeat (ISSR) dalam mendeteksi stabilitas genetik tanaman Citrumelo dari periode kultur yang panjang. Penelitian dilaksanakan pada bulan Juni 2013 sampai dengan Oktober 2015 di Laboratorium Pemuliaan Tanaman, Balai Penelitian Tanaman Jeruk dan Buah Subtropika, Tlekung. Sebanyak empat penanda dengan urutan basa berulang, yaitu retrotransposon dan ISSR digunakan untuk menguji stabilitas genetik plantlet in vitro yang berumur 22 bulan dan untuk mengonfirmasi metode yang dapat diandalkan untuk perbanyakan jeruk Citrumelo yang true-to-type pada masa mendatang. Daun plantlet diseleksi dan diisolasi secara bulk. Amplifikasi dilakukan terhadap DNA dengan sistem bulk segregant analysis (BSA), dan kemudian dipisahkan menggunakan gel agarose. Tanaman in vitro yang sama secara morfologi dapat dibedakan oleh penanda INT-retrotransposon yang mendeteksi adanya kehilangan pita pada grup sampel dengan ukuran 550 bp. Keberadaan retrotransposon dalam genom berlimpah dan aktivasinya diinduksi oleh stres. Kondisi kultur jaringan berpotensi menginduksi aktivasi retrotransposon. Keragaman genetik diperoleh sebesar 2,6%, tetapi masih dapat diterima untuk plantlet yang dihasilkan dari kultur jangka panjang. Plantlet yang digunakan dalam penelitian ini adalah plantlet yang dikulturkan sejak awal tahun 2014 dan telah digunakan untuk mempelajari faktor media dan lingkungan kultur yang efisien pada Citrumelo selama periode 2014–2015. Aktivitas pengkajian variabilitas genetik plantlet yang dihasilkan melalui tTCL batang masih terus dilakukan. Kombinasi protokol dan deteksi berbasis penanda PCR menjadi sarana yang efektif untuk perbanyakan massa benih berkualitas hasil kultur jaringan untuk mendukung progam pemuliaan maupun perbenihan.</p><p>Assessment of genetic stability of long-term cultivation of plantlet derived tTCL Citrumelo using repetitive sequence primers. Regeneration of plantlet from organogenesis of stem transverse thin cell layer (tTCL) was achieved for Citrumelo, a valuable rootstock. Identification of the genetic stability of plant tissue culture is absolutely necessary. The aim of this study was to assess the potential retrotransposons and inter simple sequence repeat (ISSR) primers in detecting the genetic stability of the Citrumelo plantlet derived from tTCL technique. The research was conducted from Juni 2013 until October 2015 in Breeding Laboratory of Indonesian Citrus and Subtropical Fruits Research Institute. A four repetitive based sequences retrotransposon and ISSR marker assays were used to evaluate genetic stability of a group of 22 months old in vitro plantlets and to confirm the most reliable method for true-to-type propagation of Citrumelo. Leaves of plantlets were selected and isolated in bulk. Groups of DNA in bulk segregant analysis (BSA) were amplified and separated using agarose gel. Vitroplants that morphologically similar have been effectively distinguished by a selected primer INT- retrotransposon that detect an deletion band at 550 bp on a line a group of sample. Retrotransposon is abundance through the genome and its activation induced by stress condition. Tissue culture condition was reported potential to induce retrotransposon activation. The genetic variation of 2.6% was acceptable for the culture that produced from long-term. Plantlets used in this study were selected from population induced from early 2014, and employed for studying media as well as environment factors for efficiently organogenesis of citrumelo in period of 2014-2015. However, additional study is on going for evaluating genetic variability from a cycle plantlet production through tTCL of stems. This combination protocol of organogenesis and PCR based markers detection would be powerful tools for mass propagation of high quality seedling derived tissue culture for breeding or cultivation programs.</p>


2015 ◽  
Vol 95 (6) ◽  
pp. 1155-1165 ◽  
Author(s):  
Dong An ◽  
Natalia V. Bykova ◽  
Samir C. Debnath

An, D., Bykova, N. V. and Debnath, S. C. 2015. EST-PCR, EST-SSR and ISSR markers to identify a set of wild cranberries and evaluate their relationships. Can. J. Plant Sci. 95: 1155–1165. The cranberry (Vaccinium marcrocarpon Ait.) is a woody, evergreen, perennial vine with great potential for economic and health benefits. Selection and use of genetically diverse genotypes are key factors in any crop breeding program to develop cultivars with a broad genetic base. Molecular markers play a major role in selecting diverse genotypes. One hundred and two wild cranberry clones collected from four Canadian provinces and five cultivars were screened with inter simple sequence repeat (ISSR), expressed sequence tag–simple sequence repeat (EST-SSR) and EST–polymerase chain reaction (PCR) markers to validate the genetic diversity and relationships among them. EST-PCRs (0.54) and EST-SSRs (0.35) generated higher frequency of major alleles than ISSRs (0.08), but ISSRs presented a higher level of polymorphism and greater polymorphic information content and expected heterozygosity than EST-SSRs and EST-PCRs. Combined cluster analysis by the unweighted pair-group method with arithmetic averages (UPGMA) separated the wild clones and cultivars into four main clusters, which was in agreement with the principal coordinate (PCo) analysis. Analysis of molecular variation detected sufficient variations among genotypes within communities and among communities within provinces with ISSR (66 and 36%, respectively), EST-PCR (72 and 34%, respectively) and EST-SSR (72 and 34%, respectively) markers. These values were 71 and 35%, respectively, for combined analysis. Combined use of three types of molecular markers, for the first time in Vaccinium species, detected a sufficient degree of variation among cranberry genotypes, allowing for differentiation and rendering these technologies valuable for genotype identification in a diverse cranberry germplasm and for more efficient parental choice in the current cranberry breeding program.


2019 ◽  
Author(s):  
Nnamdi Ifechukwude Chidi ◽  
Adedotun Adeyinka Adekunle ◽  
Temitope Oluwaseun Samuel ◽  
Emmanuel Ifechukwude Eziashi ◽  
David Okeh Igwe

Abstract Background Improving oil palm in Nigeria for food security and subsequent export requires a better understanding of the genetic diversity among oil palm progenies tolerant and susceptible to Fusarium wilt disease. In view of the limitations of the orthodox method used in screening this disease, and the advantages of molecular markers, fourteen (14) Inter-simple sequence repeat (ISSR) DNA markers were applied to evaluate the genetic diversity, population structure and cluster resolutions of alleles responsible for tolerance of 560 Elaeis guineensis Jacq palms representing 8 different progenies distributed across NigeriaResults The amplification product revealed a moderately high level of genetic diversity with a total of 46 alleles identified, resulting in an average of 4.9091 alleles per locus detected between the oil palm progenies. Polymorphic information content (PIC) values varied between 0.3706-0.7861, with a mean value of 0.6829. The genetic diversity values ranged from 0.4063-0.8125 with a mean of 0.7216, while the major allele frequency ranged from 0.2500- 0.7500 with a mean value of 0.3750. Shannon's information index (I), Nei's gene diversity (H), and the effective number of alleles (Ne) had values of 0.6931, 0.5000, and 2.000, respectively. The genetic diversity was highest in progeny 3023, and lowest in progeny 4189. Mean values of the total gene diversity (Ht), gene diversity within the population (Hs) of the progenies, coefficient of gene differentiation among the progenies (Gst) and level of gene flow (Nm) were 0.4899, 0.3520, 0.2815 and 1.2764, respectively. The dendrogram clustered the progenies into six major clusters, while Principal Component Analysis (PCA) grouped the progenies into five clusters. PCA further identified the coordinate positions of tolerant and susceptible alleles of oil palm progeniesConclusion This study confirmed the identification of the coordinate positions of tolerant alleles in the gene loci, which could be exploited by breeders to developing tolerant oil palm seedlings.


Sign in / Sign up

Export Citation Format

Share Document