scholarly journals A Newly Discovered Relation between the Critical Resolved Shear Stress and the Fatigue Endurance Limit for Metallic Materials

2022 ◽  
pp. 66-82
Author(s):  
M. Mlikota

The chapter introduces a valuable new description of fatigue strength in relation to material properties and thus a new perspective on the overall understanding of the fatigue process. Namely, a relation between the endurance limits and the accompanying values of the critical resolved shear stress (CRSS) for various metallic materials has been discovered by means of a multiscale approach for fatigue simulation. Based on the uniqueness of the relation, there is a strong indication that it is feasible to relate the endurance limit to the CRSS and not to the ultimate strength, as often done in the past.

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 803
Author(s):  
Marijo Mlikota ◽  
Siegfried Schmauder

The paper introduces a valuable new description of fatigue strength in relation to material properties and thus a new perspective on the overall understanding of the fatigue process. Namely, a relation between the endurance limits and the accompanying values of the critical resolved shear stress (CRSS) for various metallic materials has been discovered by means of a multiscale approach for fatigue simulation. Based on the uniqueness of the relation, there is a strong indication that it is feasible to relate the endurance limit to the CRSS and not to the ultimate strength, as often done in the past.


Author(s):  
Marijo Mlikota ◽  
Siegfried Schmauder

The paper introduces a valuable new description of fatigue strength in relation to material properties and thus a new perspective on the overall understanding of the fatigue process. Namely, a relation between the endurance limits and the accompanying values of the critical resolved shear stress (CRSS) for various metallic materials has been discovered by means of a multiscale approach for fatigue simulation. Based on the uniqueness of the relation, there is a strong indication that it is feasible to relate the endurance limit to the CRSS, and not to the ultimate strength as often done in the past.


Author(s):  
Nicolas O. Larrosa ◽  
Mirco D. Chapetti ◽  
Robert A. Ainsworth

From an operator/engineering perspective, the correct assessment of the severity of corrosion defects (e.g., pits) can have enormous economic, social and environmental benefits; therefore the development of a generally applicable and simple to apply procedure for fatigue assessment of key components is recognised as a valuable tool, seeking to reduce the current overly conservative procedures whilst maintaining structural integrity. The critical condition for a crack emanating from a pit (pit-to-crack transition) to start to propagate is analysed in this paper. The pitcrack configuration is re-characterized into that of a hemispherical crack of length equal to the pit depth, and this assumption is analysed by detailed 3D FEA. A propagation threshold approach is used to estimate the fatigue resistance from intrinsic material properties. The proposed approach is validated by comparison with experimental results available in the open literature.


Alloy Digest ◽  
1997 ◽  
Vol 46 (9) ◽  

Abstract Sandvik Ti-3Al-2.5V Grade 9 titanium-aluminum alloy offers excellent corrosion resistance, especially to chloride media, and has a high strength-to-weight ratio, which is especially suitable for use in aerospace applications. Tubing can be produced having a CSR (contractile strain ratio) that enhances the fatigue endurance limit. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: TI-109. Producer or source: Sandvik.


2020 ◽  
Vol 9 (1) ◽  
pp. 700-715 ◽  
Author(s):  
Wei Jian ◽  
David Hui ◽  
Denvid Lau

AbstractRecent advances in biomedicine largely rely on the development in nanoengineering. As the access to unique properties in biomaterials is not readily available from traditional techniques, the nanoengineering becomes an effective approach for research and development, by which the performance as well as the functionalities of biomaterials has been greatly improved and enriched. This review focuses on the main materials used in biomedicine, including metallic materials, polymers, and nanocomposites, as well as the major applications of nanoengineering in developing biomedical treatments and techniques. Research that provides an in-depth understanding of material properties and efficient enhancement of material performance using molecular dynamics simulations from the nanoengineering perspective are discussed. The advanced techniques which facilitate nanoengineering in biomedical applications are also presented to inspire further improvement in the future. Furthermore, the potential challenges of nanoengineering in biomedicine are evaluated by summarizing concerned issues and possible solutions.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23719-23724
Author(s):  
Md. Lokman Ali

The effect of transition-metals (TM) addition on the mechanical properties of CrCoNi medium entropy alloys (MEAs) was investigated.


2011 ◽  
Vol 197-198 ◽  
pp. 1658-1661
Author(s):  
Ying Xiong ◽  
Han Ying Zheng

Fatigue tests are carried out for 16MnR welded joint under constant strain control. Test results reveal that 16MnR weld metal exhibits characteristic of cyclic softening and non-masing obviously. The strain–life curve can be best described by the three-parameter equation. It shows the fatigue endurance limit in the heat-affecting zone (HAZ) of welded joint is lower than that in the weld metal.


Sign in / Sign up

Export Citation Format

Share Document