scholarly journals Development of a Method for Obtaining a Wear-Resistant Coating for a Cutting Tool

2022 ◽  
Author(s):  
A.E. Litvinov

Abstract. The article presents a method for producing a nanostructured wear-resistant high-hard coating with high physicomechanical and strength characteristics, resistance to shock and vibration loads. The result is an increase in adhesion between the substrate and the coating, as well as an increase in microhardness. One of the common methods of metal cutting is band-cutting machines that use closed band saws as cutting tools. Since materials with high physicomechanical characteristics (hardness, strength, etc.) are increasingly being used in modern production, which significantly complicates the cutting process and makes increased demands on the cutting tool. To expand the range of processed materials for which the productive use of band-cutting machines is possible, it became necessary to create a band saw with higher cutting characteristics. At the same time, the specificity of the working conditions of the band saw shows that the blade should have such characteristics as increased vibration resistance, resistance to alternating and dynamic loads, and the cutting part of the saw should have increased resistance to shock, dynamic, alternating loads, have high hardness, as well as increased wear resistance.

2015 ◽  
Vol 723 ◽  
pp. 910-913
Author(s):  
Shi Long Gao ◽  
Li Bao An ◽  
Xiao Chong Wang ◽  
Song Gao

Some engineering materials have excellent performances, but the machining of these materials is a problem. It is very inadequate to meet machining requirement only using traditional cutting tool materials. Therefore, exploring the machinability of difficult-to-machine materials and applying appropriate cutting tool materials have drawn much attention in metal cutting industry for guarantied product quality and productivity. Cubic boron nitride (CBN) has been recognized as one of the most suitable cutting tool materials due to its high hardness, high wear resistance, high chemical inertness, and excellent chemical stability in high temperature. Research on various aspects of CBN cutting performances has been conducted in recent years. This paper presents the progress on machining difficult-to-machine materials using CBN cutting tools.


2012 ◽  
Vol 549 ◽  
pp. 839-842
Author(s):  
Xiang Yin Hu ◽  
Yan Hui Hu ◽  
Xiao Jing Li

A coated carbide cutting tool with its high hardness and high wear resistance, good chemical stability and extensive compatibility characteristics, is widely applied in the metal cutting processing field. It is one of the cutting tools, belonging to the current focus research and development project of all countries in the world. The author mainly studies the cutting force contrast between coated carbide cutting tools and not coated ones. At the same time study them on the rake face friction coefficient contrast and the chip deformation coefficient contrast so as to explain the reasons for coated cutting tool cutting force decrease. The research indicates that, in machining course, applying physical vapor deposition coated technology (PVD) of carbide cutting tools cutting force change with feeds, cutting depth and speed is the same as not coated carbide cutting tools. But coated carbide cutting tools cutting force is obviously less than that of not coated carbide cutting tools. The main reason is that the friction coefficient between the two kinds of cutting tool materials and the workpiece is different. The result of study will help popularization and application of coated carbide cutting tools.


2007 ◽  
Vol 567-568 ◽  
pp. 185-188 ◽  
Author(s):  
Miroslav Piska

Modern trends in metal cutting, high speed/feed machining, dry cutting and hard cutting set more demanding characteristics for cutting tool materials. The exposed parts of the cutting edges must be protected against the severe loading conditions and wear. The most significant coatings methods for cutting tools are PVD and CVD/MTCVD today. The choice of the right substrate or the right protective coating in the specific machining operation can have serious impact on machining productivity and economy. In many cases the deposition of the cutting tool with a hard coating increases considerably its cutting performance and tool life. The coating protects the tool against abrasion, adhesion, diffusion, formation of comb cracks and other wear phenomena.


2010 ◽  
Vol 30 (9) ◽  
pp. 910-920 ◽  
Author(s):  
F. V. Kiryukhantsev-Korneev ◽  
N. A. Shirmanov ◽  
A. N. Sheveiko ◽  
E. A. Levashov ◽  
M. I. Petrzhik ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


2018 ◽  
Vol 224 ◽  
pp. 01066
Author(s):  
Anton Seleznev ◽  
Anton Smirnov ◽  
Pavel Peretyagin

The work represents a new approach of preliminary surface treatment of replaceable polyhedral cutting ceramics inserts for significant increase of adhesion strength with deposited wear-resistant nitride ceramics. By this method the hydrojet treatment was used to repair surface defects occurring during manufacturing process of any required geometry of cutting inserts.


2019 ◽  
Vol 298 ◽  
pp. 00064
Author(s):  
Petr Nikishechkin ◽  
Nikita Grigoriev ◽  
Nadezhda Chervonnova

The basic aspects of preparing a cutting tool for applying wear-resistant coatings to it, in particular, the use of brush technology to round its cutting edges, are investigated. A structural model for constructing a specialized brush machine control system has been developed and the basic aspects of its development have been determined.


Author(s):  
V. S. Panov

The paper describes the technology of producing a wear resistant silicon nitride coating on cemented carbide cutting tools and factors affecting its structure and thickness. A review of domestic and foreign authors’ works is given on the properties and applications of cemented carbides in cutting, drilling, die stamping tools, wear resistant materials, for chipless processing of wood, plastics. It is noted that one of the promising ways of cutting tool development is using indexable throwaway inserts (ITI) with wear resistant coatings. The choice of silicon nitride as a material for cemented carbide tool coating is justified. The data on silicon nitride deposition methods, investigation of cutting tool structures and properties are provided. Laboratory and factory tests of Si3N4-coated cemented carbide tools demonstrated coating applicability in improving the wear resistance and lifetime of cutting inserts.


1974 ◽  
Vol 16 (5) ◽  
pp. 322-330
Author(s):  
P. F. Thomason

The transient thermal stresses in an insulated quarter-plane, subject to an instantaneous heat source on a segment of the surface, are determined with the aid of the Green's function for a two-dimensional infinite space. Numerical results for the transient thermal stresses at the surfaces of the quarter-plane are superimposed on previous isothermal results for cutting-load stresses in a π/2 wedge, to provide a model for a metal-cutting tool in the transient stages of a cutting process. The results are related to the problem of the thermal-cracking of cutting tools, and mechanisms of crack nucleation and propagation are proposed for both ceramic and cemented-carbide tools.


2014 ◽  
Vol 682 ◽  
pp. 491-494 ◽  
Author(s):  
Vladislav Bibik ◽  
Elena Petrova

The author considers methods of forecasting metal-cutting tool life based on characteristics of cutting tool material. These characteristics depend on differences in numerical values of physical and chemical properties of tool material due to changes in its composition, structure, and production process variables. The described methods allow obtaining the information necessary for forecasting the tool life beyond the process of cutting, for example at the stage of cutting tool manufacturing. The author suggests using the method of registration of thermo-physical properties of the tool material as a promising forecasting technique.


Sign in / Sign up

Export Citation Format

Share Document