scholarly journals Survival of white blood cells of mice (Mus musculus L) on interval AD with CD post gamma radiation Co-60

Author(s):  
Gusti Ngurah Sutapa ◽  
Ni Nyoman Ratini ◽  
Ni Kadek Nova Anggarani ◽  
I Gde Antha Kasmawan

One of the phenomena of the low-dose radiation effect is the radio adaptation response which is an important part of the response of molecules, cells, and body tissues to ionizing radiation. The phenomenon of radio adaptation response is a response that occurs when changes in gene expression can be induced by exposure to low doses of radiation (<0.5 Gy). Changes in the expression of this gene under certain circumstances serve to protect cells against the effects caused by subsequent exposure to higher doses of radiation, so this situation is known as an adaptive response or radio adaptation response. Cells can respond to very low doses of radiation with some changes in gene expression. Beginning with the administration of radiation to cells with a very low dose, known as the adaptation dose (AD), and then in a short period being given a larger dose of radiation, known as the challenge dose (CD), there was a decrease in the number of induced chromosome aberrations when compared to cells that were not irradiated at an adapted dose. The purpose of this study was to obtain a radiotherapy method that could show a reduction in the patient's dose.

2020 ◽  
Vol 9 (3) ◽  
pp. 249-262
Author(s):  
Xiaochang Liu ◽  
Zheng Liu ◽  
Duo Wang ◽  
Yang Han ◽  
Sai Hu ◽  
...  

Abstract Whole-body exposure to low-dose radiation due to diagnostic imaging procedures, occupational hazards and radiation accidents is a source of concern. In this study, we analyzed the effects of single and long-term low-dose irradiation on the immune system. Male Balb/c mice received a single whole-body dose of irradiation (0.01, 0.05, 0.2, 0.5 or 1 Gy). For long-term irradiation, mice were irradiated 10 times (total dose of 0.2, 0.5 or 1 Gy) over a period of 6 weeks. Two days after single or long-term irradiation, the numbers of splenic macrophages, natural killer cells and dendritic cells were reduced, and the spleen organ coefficient was decreased. At 2 Days after long-term low-dose irradiation, the number of white blood cells in the peripheral blood of the mice decreased. Between 7 and 14 Days after long-term low-dose irradiation, the number of immune cells in the thymus and spleen began to increase and then stabilized. Th1/Th2 cytokines and reactive oxygen species-related proteins first decreased and then increased to a plateau. Our results show a significant difference in the effects of single and long-term low-dose irradiation on the immune system.


2016 ◽  
Vol 15 (6) ◽  
pp. 732-736 ◽  
Author(s):  
Yehoshua Socol ◽  
James S. Welsh

All procedures involving ionizing radiation, whether diagnostic or therapeutic, are subject to strict regulation, and public concerns have been raised about even the low levels of radiation exposures involved in diagnostic imaging. During the last 2 decades, there are signs of more balanced attitude to ionizing radiation hazards, as opposed to the historical “radiophobia.” The linear no-threshold hypothesis, based on the assumption that every radiation dose increment constitutes increased cancer risk for humans, is increasingly debated. In particular, the recent memorandum of the International Commission on Radiological Protection admits that the linear no-threshold hypothesis predictions at low doses (that International Commission on Radiological Protection itself has used and continues to use) are “speculative, unproven, undetectable, and ‘phantom’.” Moreover, numerous experimental, ecological, and epidemiological studies suggest that low doses of ionizing radiation may actually be beneficial to human health. Although these advances in scientific understanding have not yet yielded significant changes in radiation regulation and policy, we are hopeful such changes may happen in the relatively near future. This article reviews the present status of the low-dose radiation hazard debate and outlines potential opportunities in the field of low-dose radiation therapy.


2021 ◽  
Vol 66 (4) ◽  
pp. 252-258
Author(s):  
D. V. Saleeva ◽  
G. D. Zasukhina

This review presents the literature data of new approaches for the treatment of COVID-19 with low doses of radiation (LDR). In addition, data on the use of LDR for the treatment of various disorders, in particular pneumonia, a number of inflammatory processes of various etiology, as well as Alzheimer’s disease are discussed. The mechanisms of LDR action are briefly described, associated with the activation of the immune system and antiinflammatory response due to the effect on the processes of oxidative stress, which is reflected in an increase in the activity of cytokines (interleukin- (IL-) 6), changes in the expression of a number of genes (such as P53 and NF-κB (p65)) and long non-coding RNAs (ncRNAs) (the authors’ own data are presented). Based on the analysis of the material presented, it can be assumed that further clinical trials of the effect of MDR (5–10 cGy) on patients with COVID-19, who are at different stages of the disease, will reveal the optimal conditions for the development and use of an effective treatment regimen.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 58 ◽  
Author(s):  
Lukáš Jakl ◽  
Eva Marková ◽  
Lucia Koláriková ◽  
Igor Belyaev

Purpose: Ionizing radiation induced foci (IRIF) known also as DNA repair foci represent most sensitive endpoint for assessing DNA double strand breaks (DSB). IRIF are usually visualized and enumerated with the aid of fluorescence microscopy using antibodies to γH2AX and 53BP1. This study analyzed effect of low dose ionizing radiation on residual IRIF in human lymphocytes to the aim of potential biodosimetry and possible extrapolation of high-dose γH2AX/53BP1 effects to low doses and compared kinetics of DSB and IRIF. We also analyzed whether DNaseI, which is used for reducing of clumps, affects the IRIF level. Materials and Methods: The cryopreserved human lymphocytes from umbilical cord blood (UCB) were thawed with/without DNaseI, γ-irradiated at doses of 0, 5, 10, and 50 cGy and γH2AX/53BP1 foci were analyzed 30 min, 2 h, and 22 h post-irradiation using appropriate antibodies. We also analyzed kinetics of DSB using PFGE. Results: No significant difference was observed between data obtained by γH2AX foci evaluation in cells that were irradiated by low doses and data obtained by extrapolation from higher doses. Residual 53BP1 foci induced by low doses significantly outreached the data extrapolated from irradiation by higher doses. 53BP1 foci induced by low dose-radiation remain longer at DSB loci than foci induced by higher doses. There was no significant effect of DNaseI on DNA repair foci. Conclusions: Primary γH2AX, 53BP1 foci and their co-localization represent valuable markers for biodosimetry of low doses, but their usefulness is limited by short time window. Residual γH2AX and 53BP1 foci are more useful markers for biodosimetry in vitro. Effects of low doses can be extrapolated from high dose using γH2AX residual foci while γH2AX/53BP1 foci are valuable markers for evaluation of initial DSB induced by ionizing radiation. Residual IRIF induced by low doses persist longer time than those induced by higher doses.


Sign in / Sign up

Export Citation Format

Share Document