scholarly journals Effect of drought stress on morpho-physiological traits in some traditional rice cultivars of Kokrajhar district, Assam, India

2016 ◽  
Vol 5 (08) ◽  
pp. 1402 ◽  
Author(s):  
Bhaskar Sarma* ◽  
Neeva Rani Basumatary ◽  
Shamsun Nahar ◽  
Bhaben Tanti

Water status is one of the critical factors affecting rice production. Rice cultivars tolerant to drought stress at the vegetative stage were selected. Six traditional rice cultivars of Kokrajhar district, Assam, namely, Sali, Bora, Ahu, Malsira, and two variety of Jaha i.e.; white and black were included in this study. The germination index, plant growth, root architecture, leaf rolling, leaf death and leaf relative water content in plants subjected to drought stress for 0, 7, 14 and 21 days were recorded. Based upon the levels of water stress tolerance, three groups of rice cultivars were recognized, as follows: highly drought-tolerant, moderately drought-tolerant and drought-sensitive cultivars. The Joha (white) rice cultivar was considered to be a highly drought-tolerant cultivar. The moderately drought-tolerant cultivars included Joha (black), Ahu, Sali and Bora. The Malsira cultivar was considered sensitive to drought.

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M Miftahudin ◽  
Rury Eryna Putri ◽  
Tatik Chikmawati

Abstract. Miftahudin, Putri RE, Chikmawati T. 2020. Vegetative morphophysiological responses of four rice cultivars to drought stress. Biodiversitas 21: 3727-3734. Each rice genotype develops certain morphophysiological responses to drought stress. The study aimed to analyze the morphophysiological responses of vegetative aspect of four rice cultivars to drought stress. A 10% Polyethylene glycol-6000 was added to a Yoshida nutrient solution medium as a drought stress stimulant for four rice cultivars, i.e., IR64, Hawara Bunar, Situbagendit, and Inpago 10. Fourteen-days-old rice seedlings were grown on the media with and without drought stress treatment for 9 days, and morphophysiological characters of vegetative aspects were observed. Drought stress inhibited the shoot growth of cv. Hawara Bunar, but increased shoot growth of cv. Inpago 10. The physiological responses in the form of leaf relative water content, proline, malondialdehyde (MDA), and total chlorophyll contents in cv. Hawara Bunar was inversely proportional to those of cv. IR64 showed an inferior response to drought stress. The rice cv. Hawara Bunar might develop better response mechanisms to drought than that of cv. IR64. The physiological responses of cvs. Situbagendit and Inpago 10 were in between the other two cultivars. We conclude that the variation of morphophysiological responses to drought stress among rice cultivars is an indicator of tolerance capability to drought that could be used as early-growth selection criteria in rice breeding programs for drought tolerance.


2007 ◽  
Vol 19 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Marcelo de A. Silva ◽  
John L. Jifon ◽  
Jorge A.G. da Silva ◽  
Vivek Sharma

Drought is one of the major limitations to plant productivity worldwide. Identifying suitable screening tools and quantifiable traits would facilitate the crop improvement process for drought tolerance. In the present study, we evaluated the ability of four relatively physiological parameters (variable-to-maximum chlorophyll a fluorescence ratio, F v/F m; estimated leaf chlorophyll content via SPAD index; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between drought tolerant and susceptible sugarcane genotypes subjected to a 90-d drought cycle. Eight field-grown genotypes were studied. By 45 d after the onset of treatments, the F v/F m, SPAD index and RWC of drought-stressed plants had declined significantly in all genotypes compared to values at the onset of well-watered treatments. However, the reductions were more severe in leaves of susceptible genotypes. Under drought stress, the tolerant genotypes as a group, maintained higher F v/F m (8%), SPAD index (15%), and RWC (16%) than susceptible genotypes. In general, LT of drought-stressed plants was higher (~4ºC) than that of well-watered plants but the relative increase was greater among drought susceptible genotypes. Under drought stress, LT of tolerant genotypes was on average 2.2ºC lower than that of susceptible genotypes. The results are consistent with the tolerant-susceptible classification of these genotypes and indicate that these tools can be reliable in screening for drought tolerance, with F v/F m, SPAD index and LT having the added advantage of being nondestructive and easily and quickly assessed.


HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1309-1312 ◽  
Author(s):  
Smita Barkataky ◽  
Robert C. Ebel ◽  
Kelly T. Morgan ◽  
Keri Dansereau

This study was conducted on well-watered citrus to determine changes in water relations during cold acclimation independent of drought stress. Potted sweet orange and Satsuma mandarin trees were exposed to progressively lower, non-freezing temperatures down to 10/4 °C, light/dark temperatures, respectively, for 9 weeks in environmental growth chambers to promote cold acclimation. The trees were watered twice daily and three times on the day water relations data were collected to minimize drought stress. Although soil moisture was higher and non-limiting for plants in the cold than in the warm chamber, cold temperatures promoted stomatal closure, higher root resistance, lower stem water potential (Ψstem), lower transpiration, and lower leaf ψS. Leaf relative water content (RWC) was not different for cold-acclimated trees compared with the controls. Cold acclimation promoted stomatal closure at levels only observed in severely drought-stressed plants exposed to warm temperatures and where Ψstem and RWC are typically much lower than what was found in this study. Ψstem continued to decline the last 4 weeks of the experiment although air temperature, leaf ψS, RWC, stomatal conductance (gS), and transpiration were constant. The results of this experiment indicate that water relations of citrus during cold acclimation vary from those known to occur as a result of drought stress, which have implications for using traditional measures of plant water status in irrigation scheduling during winter.


2016 ◽  
Author(s):  
M. Kulkarni

AbstractWater stress is one of the major limitations to fruit production worldwide. Identifying suitable indicators, screening techniques and quantifiable traits would facilitate the genetic improvement process for water stress tolerance. In the present study, we evaluated the ability of physiological parameters (Transpiration, E; Fv/Fm; leaf water potential, ψleaf; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between contrasting Z. mauritiana clones subjected to a 30-d drought cycle. Four field-grown clones Seb and Gola (tetraploid) and Q 29 and B 5/4 (diploid) were studied. By 30 d after the onset of water stress treatment, the E, Fv/Fm, ψleaf and RWC of drought-stressed plants had declined significantly in all genotypes compared to values of well-watered treatments. However, the reductions were more severe in leaves of diploid clones. Under drought stress, the Seb and Gola, maintained higher E (31.5%), Fv/Fm (6.28%), ψleaf; (11.2%), and RWC (9.3 %) than Q 29 and B 5/4 clones. In general, LT of drought-stressed plants was higher (~4°C) than that of well-watered plants but the relative increase was greater among later than former ones. Under maximum drought stress, LT of Seb and Gola clones was on average 3.0°C lower than that of Q 29 and B 5/4. Former clones yielded 20% more than later ones, mainly reason being (14.8%) less fruit drop as an effect of water stress. The results indicate that presented parameters can be reliable in screening for water stress tolerance ability, with Fv/Fm, ψleaf, RWC and LT having the added advantage of being easily and quickly assessed.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Wan Mohd Aizat ◽  
Fiqri Dizar Khaidizar ◽  
Boon Chin Tan

Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.


2018 ◽  
Author(s):  
Yiming Liu ◽  
Guofu Hu ◽  
Guoqiang Wu ◽  
Guodao Liu ◽  
Hengfu Huan ◽  
...  

AbstractDrought stress is a major limiting factor for plant growth and development in many regions of the world. This study was designed to investigate antioxidant metabolism and dehydrin expression responses to drought stress in two switchgrass cultivars (drought tolerant Alamo, and drought sensitive Dacotah) contrasting in drought tolerance. The plants were subjected to well-watered [100% evapotranspiration (ET)] or drought stress (30%-50% ET) conditions for up to 24 d in growth chambers. Drought stress decreased leaf relative water content (RWC), increased leaf electrolyte leakage (EL), leaf malondialdehyde (MDA) content in two cultivars, but Alamo exhibited higher leaf RWC level, lower leaf EL and MDA when compared to Dacotah at 24 d of drought treatment. Drought stress also increased superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in two cultivars, Alamo had relatively higher SOD, CAT and APX activities and greater abundance of SOD and APX isozymes than Dacotah at 24 d of drought treatment. Alamo had higher abundance of 55 KDa and 18 KDa dehydrin accumulation than Dacotah under drought treatment. Relative genes expression level of PvCAT1, PvAPX2, PvERD and PvPIP1;5 in Alamo were significantly higher than Dacotah at 24 d of drought treatment. These results suggest that increase in antioxidant enzymes and accumulation of dehydrin were highly related with switchgrass drought tolerance. Antioxidant enzyme activity, isozyme expression and dehydrin abundance could provide a useful screening tool to identify relative drought tolerance in switchgrass cultivars.


2021 ◽  
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Wan Mohd Aizat ◽  
Fiqri Dizar Khaidizar ◽  
Boon Chin Tan

Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on the plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced leaf relative water content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1,415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.


2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.


2019 ◽  
Vol 18 (6) ◽  
pp. 75-84
Author(s):  
Alireza Motallebi-Azar ◽  
István Papp ◽  
Anita Szegő

Dehydrins are proteins that play a role in the mechanism of drought tolerance. This study aimed at establishing dehydrin profile and accumulation in four local melon varieties of Iran: Mino, Dargazi, Saveii, and Semsori, as well as in a commercial variety Honeydew. Plants were treated with drought stress by adjusting the soil water content to 75, 50, 40, 30 and 20% of field capacity (FC) by withholding water. Water status of plants was monitored based on the seedling fresh weight (FW) and relative water content of leaves (RWC). Total protein content was extracted, then heat-stable protein (HSP) fraction was isolated for each variety and water stress treatment. After SDS-PAGE of HSP, Western blotting analysis was carried out with Anti-dehydrin rabbit (primary) and Goat anti rabbit (secondary) antibodies. ANOVA results showed that with decreasing FC below 75%, FW and RWC decreased, but these changes significantly varied among genotypes. On the basis of FW and RWC data under different drought stress treatments, the following drought-tolerant ranking was established: Mino > Dargazi > Saveii and Honeydew > Semsori, from tolerant to sensitive order. Results of Western blot analysis showed that expression of some proteins with molecular weights of 19–52 kDa was induced in the studied varieties under drought stress (% FC). Expression level of the dehydrin proteins in different varieties was variable and also depending on the drought stress level applied. However, dehydrin proteins (45 and 50 kDa) showed strong expression levels in all varieties under severe drought stress (20% FC). The abundance of dehydrin proteins was higher in tolerant varieties (Mino and Dargazi) than in moderate and drought sensitive genotypes. Consequently, dehydrins represent a potential marker for selection of genotypes with enhanced drought tolerance.


2018 ◽  
Vol 46 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Preeyanuch LARKUNTHOD ◽  
Noppawan NOUNJAN ◽  
Jonaliza L SIANGLIW ◽  
Theerayut TOOJINDA ◽  
Jirawat SANITCHON ◽  
...  

Many of the economically important rice cultivars including ‘Khao Dawk Mali 105’ (KDML105) or jasmine rice, one of the world’s famous rice exported from Thailand suffers from drought due to erratic rainfalls and limited irrigation. To improve drought tolerance and reserve genetic background of KDML105, chromosome segment substitution lines (CSSL) containing drought tolerant quantitative trait loci (DT-QTL) has been previously developed by backcrossing between KDML105 and drought tolerant donor, IR58586-F2-CA-143 (DH212). To understand the physiological responses related to drought tolerance in CSSL lines compared to parents, two CSSLs namely CSSL1-16 and CSSL1-18, respectively were used in this study. Twenty-one-d-old hydroponically grown plants were subjected to 20% PEG for 0, 7, 14 d and then recovered from stress for 3 d. The results indicated that CSSL lines especially, CSSL1-16 showed better performance under drought stress compared to their recurrent parent. Drought tolerance superior CSSL1-16 line was indicated by high water status (high relative water content and leaf water potential), good osmotic adjustment, high proline and greater membrane stability. Moreover, this line was able to resume growth after stress recovery whereas other lines/cultivar could not recover. Similarly, drought tolerant donor showed high water status suggesting that well-maintained plant water status was associated with drought tolerant trait. It could be concluded that the highest drought tolerant line was CSSL1-16 followed by DH212, CSSL1-18 and KDML105. It would be interesting to go further into introgressed section in CSSL1-16 to identify potential candidate genes in DT-QTL for breeding drought tolerant rice in the future.


Sign in / Sign up

Export Citation Format

Share Document