Stomatal and physiological response of contrasting Z. mauritiana (Lamk.) clones to water stress

2016 ◽  
Author(s):  
M. Kulkarni

AbstractWater stress is one of the major limitations to fruit production worldwide. Identifying suitable indicators, screening techniques and quantifiable traits would facilitate the genetic improvement process for water stress tolerance. In the present study, we evaluated the ability of physiological parameters (Transpiration, E; Fv/Fm; leaf water potential, ψleaf; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between contrasting Z. mauritiana clones subjected to a 30-d drought cycle. Four field-grown clones Seb and Gola (tetraploid) and Q 29 and B 5/4 (diploid) were studied. By 30 d after the onset of water stress treatment, the E, Fv/Fm, ψleaf and RWC of drought-stressed plants had declined significantly in all genotypes compared to values of well-watered treatments. However, the reductions were more severe in leaves of diploid clones. Under drought stress, the Seb and Gola, maintained higher E (31.5%), Fv/Fm (6.28%), ψleaf; (11.2%), and RWC (9.3 %) than Q 29 and B 5/4 clones. In general, LT of drought-stressed plants was higher (~4°C) than that of well-watered plants but the relative increase was greater among later than former ones. Under maximum drought stress, LT of Seb and Gola clones was on average 3.0°C lower than that of Q 29 and B 5/4. Former clones yielded 20% more than later ones, mainly reason being (14.8%) less fruit drop as an effect of water stress. The results indicate that presented parameters can be reliable in screening for water stress tolerance ability, with Fv/Fm, ψleaf, RWC and LT having the added advantage of being easily and quickly assessed.

2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Almoataz Bellah Ali El-Mouhamady ◽  
Abdul Aziz M. Gad ◽  
Ghada S. A. Abdel Karim

Abstract Background Water stress, specifically the limited water resources needed to grow strategic crops, especially rice, poses a great threat to crop productivity. So, it was imperative that scientists all work together to try genetically improving the rice for drought tolerance in light of these environmental challenges. The aim of this study is trying to know the genetic behavior responsible for water-deficit tolerance in rice genotypes but at the molecular level. Moreover, this attempt will be an important leap in the process of genetic improvement in rice for water stress tolerance in Egypt. Results Twenty-three rice genotypes including eight parents and their fifteen F1 crosses or (the first hybrid generation) by line X tester analysis were evaluated for water stress tolerance during two experiments (the control and drought experiment) besides some molecular–biochemical studies for eight parents and the highest selected five crosses for water stress tolerance. The research revealed that five rice crosses out of fifteen hybrids were highly tolerant to water stress compared to the normal conditions. Data of biochemical markers indicated the presence of bands that are considered as molecular genetic markers for water-deficit tolerance in some rice genotypes, and this is the scientific progress achieved in this research. This was evident by increasing the density and concentration of SDS-protein electrophoresis besides enhancing the activities of peroxidase (POD) and polyphenol oxidase (PPO) under water-deficit conditions, which confirmed the tolerance of drought stress in the eight rice genotypes and the best five crosses from the first hybrid generation. Conclusion The five promising and superior rice hybrids showed an unparalleled tolerance to water stress in all evaluated traits under water stress treatment compared to the standard experiment. Also, biochemical and molecular parameters evidence confirmed the existence of unquestionable evidence that it represents the main nucleus for producing rice lines tolerated for drought stress under Egyptian conditions.


2007 ◽  
Vol 19 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Marcelo de A. Silva ◽  
John L. Jifon ◽  
Jorge A.G. da Silva ◽  
Vivek Sharma

Drought is one of the major limitations to plant productivity worldwide. Identifying suitable screening tools and quantifiable traits would facilitate the crop improvement process for drought tolerance. In the present study, we evaluated the ability of four relatively physiological parameters (variable-to-maximum chlorophyll a fluorescence ratio, F v/F m; estimated leaf chlorophyll content via SPAD index; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between drought tolerant and susceptible sugarcane genotypes subjected to a 90-d drought cycle. Eight field-grown genotypes were studied. By 45 d after the onset of treatments, the F v/F m, SPAD index and RWC of drought-stressed plants had declined significantly in all genotypes compared to values at the onset of well-watered treatments. However, the reductions were more severe in leaves of susceptible genotypes. Under drought stress, the tolerant genotypes as a group, maintained higher F v/F m (8%), SPAD index (15%), and RWC (16%) than susceptible genotypes. In general, LT of drought-stressed plants was higher (~4ºC) than that of well-watered plants but the relative increase was greater among drought susceptible genotypes. Under drought stress, LT of tolerant genotypes was on average 2.2ºC lower than that of susceptible genotypes. The results are consistent with the tolerant-susceptible classification of these genotypes and indicate that these tools can be reliable in screening for drought tolerance, with F v/F m, SPAD index and LT having the added advantage of being nondestructive and easily and quickly assessed.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 259
Author(s):  
Mahmoud F. Seleiman ◽  
Nasser Al-Suhaibani ◽  
Nawab Ali ◽  
Mohammad Akmal ◽  
Majed Alotaibi ◽  
...  

Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.


2019 ◽  
Vol 78 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Sivanantham Amrutha ◽  
Abdul Bari Muneera Parveen ◽  
Muthusamy Muthupandi ◽  
Veerasamy Sivakumar ◽  
Raman Nautiyal ◽  
...  

Abstract The genus Eucalyptus occurs in a wide range of environmental conditions, including rainforests, subal-pine, arid/semi-arid and moist temperate zones. It includes species with the capacity to cope with extremely low water potential. This study aims to screen water stress tolerance in two Eucalyptus species under nursery conditions. Inter-specific variation in morphological, physiological, biochemical and molecular parameters in two Eucalyptus species (E. tereticornis and E. camaldulensis) with contrasting levels of tolerance to progressive short term water-deprived condition was evaluated. Water stress reduced growth measured in terms of root:shoot ratio and specific leaf area (SLA), photosynthetic parameters, leaf water potential and relative water content (RWC) in both genotypes. Biochemical parameters including total sugars, phenol, phytohormones (indole acetic acid and abscisic acid) and proline were found to significantly increase during stress in both genotypes. Water responsive transcripts like osmotin and DREB/CBF registered significant expression variation in the two genotypes, suggesting their key role in regulating water stress tolerance in Eucalyptus.


2016 ◽  
Vol 5 (08) ◽  
pp. 1402 ◽  
Author(s):  
Bhaskar Sarma* ◽  
Neeva Rani Basumatary ◽  
Shamsun Nahar ◽  
Bhaben Tanti

Water status is one of the critical factors affecting rice production. Rice cultivars tolerant to drought stress at the vegetative stage were selected. Six traditional rice cultivars of Kokrajhar district, Assam, namely, Sali, Bora, Ahu, Malsira, and two variety of Jaha i.e.; white and black were included in this study. The germination index, plant growth, root architecture, leaf rolling, leaf death and leaf relative water content in plants subjected to drought stress for 0, 7, 14 and 21 days were recorded. Based upon the levels of water stress tolerance, three groups of rice cultivars were recognized, as follows: highly drought-tolerant, moderately drought-tolerant and drought-sensitive cultivars. The Joha (white) rice cultivar was considered to be a highly drought-tolerant cultivar. The moderately drought-tolerant cultivars included Joha (black), Ahu, Sali and Bora. The Malsira cultivar was considered sensitive to drought.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 915A-915 ◽  
Author(s):  
Rajeev Arora ◽  
Dharmalingam S. Pitchay ◽  
Bradford C. Bearce

This study evaluated the effect of reversible water stress on heat stress tolerance (HST) in greenhouse-grown geraniums. Water stress was imposed by withholding irrigation until pots reached ≈30% (by weight) of well-watered (control) plant pots, and maintaining this weight for 7 days. Control plants were watered to just below field capacity, every other day. Leaf xylem water potential (LXWP, MPa), leaf-relative water content (LRWC,%), media water content (MWC, % fresh weight), and heat stress tolerance (HST, LT50) were determined for control and stressed plants. HST (LT50), defined as temperature causing half-maximal percent injury, was based on electrolyte leakage from leaf disks subjected to 25 to 60C. Control-watering was restored in stressed plants and above measurements made after 7 days of recovery. Data indicate: 1) LXWP, LRWC, and MWC in control and stressed plants were –0.378 and –0.804 MPa, 92.31% and 78.69% and 82.86% and 15.5%, respectively; 2) HST increased significantly in stressed as compared to control plants (LT50 of 55C vs. 51C); 3) control plants were near maximally injured by 53C treatment and sustained more than 3-fold greater injury than stressed plants at 53C. In recovered plants, LXWP and RWC reversed back to control levels, paralleled by loss of higher HST.


1994 ◽  
Vol 24 (12) ◽  
pp. 2404-2408 ◽  
Author(s):  
Jorge H. Lemcoff ◽  
Ana B. Guarnaschelli ◽  
Ana M. Garau ◽  
María E. Bascialli ◽  
Claudio M. Ghersa

Osmotic adjustment was studied in 6-month-old seedlings of Eucalyptuscamaldulensis Dehnh., Eucalyptustereticornis Smith, Eucalyptusviminalis Labill., and Eucalyptusgrandis Hill ex Maiden. Because osmotic adjustment is related to water-stress tolerance, it can be used as a selection criterion of material adapted to drought. Half of the individuals of each species were submitted gradually to water stress, while the rest were maintained in soil at field capacity. Twenty-five days later the effect of stress on the development of osmotic adjustment was analyzed. All species had adjusted osmotically. The lowest osmotic adjustment was observed in E. camaldulensis and E. grandis (14.1% and 15.2%, respectively). Eucalyptusviminalis and E. tereticornis had values of 32.3% and 41.9%, respectively. Our results demonstrate that species differ significantly in their extent of osmotic adjustment under drought stress, and that it is possible to use this inductive plant feature as one of the criteria to select, during early developmental stages, Eucalyptus genotypes adapted to drought-prone environments. Some phylogenetic considerations are presented.


2022 ◽  
Vol 7 (1) ◽  
pp. 37-60
Author(s):  
Yenni ◽  
◽  
Mohd Hafiz Ibrahim ◽  
Rosimah Nulit ◽  
Siti Zaharah Sakimin ◽  
...  

<abstract> <p>Drought stress is one of the challenges that can affect the growth and the quality of strawberry. The study aims to determine the growth, biochemical changes and leaf gas exchange of three strawberry cultivars under drought stress. This study was conducted in a glasshouse at Indonesian Citrus and Subtropical Fruits Research Institute, Indonesia, from July-November 2018. The experiment was arranged in a factorial randomized completely block design (RCBD) with three replications and four water deficit (WD) levels [100% field capacity (FC)/well-watered), 75% of FC (mild WD), 50% of FC (moderate WD), and 25% of FC (severe WD)] for three strawberry cultivars (Earlibrite, California and Sweet Charlie). The results showed that total chlorophyll and anthocyanin contents (p ≤ 0.05) were influenced by the interaction effects of cultivars and water deficit. Whereas other parameters such as plant growth, transpiration rate (<italic>E</italic>), net photosynthesis (<italic>A</italic>), stomatal conductance (<italic>gs</italic>), leaf relative water content (LRWC), flowers and fruits numbers, proline content, length, diameter, weight and total soluble solid (TSS) of fruit were affected by water deficit. <italic>A</italic> had positive significant correlation with plant height (r = 0.808), leaf area (r = 0.777), fruit length (r = 0.906), fruit diameter (r = 0.889) and fruit weight (r = 0.891). Based on the results, cultivars affected LRWC, and also number of flowers and fruits of the strawberry. This study showed that water deficit decreased plant growth, chlorophyll content, leaf gas exchange, leaf relative water content, length, diameter and weight of fruit but enhanced TSS, anthocyanin, MDA, and proline contents. Increased anthocyanin and proline contents are mechanisms for protecting plants against the effects of water stress. California strawberry had the highest numbers of flowers and fruits, and also anthocyanin content. Hence, this cultivar is recommended to be planted under drought stress conditions. Among all water stress treatments, 75% of FC had the best results to optimize water utilization on the strawberry plants.</p> </abstract>


Rhizosphere ◽  
2021 ◽  
pp. 100367
Author(s):  
Zohreh Ghanbarzadeh ◽  
Hajar Zamani ◽  
Sasan Mohsenzadeh ◽  
Łukasz Marczak ◽  
Maciej Stobiecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document