Comparative effect of antifoaming agent polydimethylsiloxane and synthetic antioxidant tertiary butyl hydroquinone on thermal oil degradation in deep frying

2021 ◽  
Author(s):  
Mayamol Nichlavose ◽  
Rupesh Sarfare ◽  
Sergey Melnikov
2021 ◽  
Author(s):  
◽  
Alexander Risos

<p>Monitoring of hydrocarbon oxidation is of great importance in many industry applications and reliable in-situ measurements are a challenge. In literature, it was shown that new versus degraded hydrocarbons show a change in their dielectric properties. In this thesis, the degradation of the oil was investigated by means of two thermal oil degradation experiments and the Fourier transform infrared spectroscopy. In addition, the impact. on the dielectric properties were determined using a novel type of a dielectric test cell that is temperature  compensated. It was found that ketones, acids and moisture were generated through a thermal oil aging process. These products have been found to change in the dielectric properties of the liquid which are reflected through the complex permittivity. Ketones increased largely the real part of the permittivity and organic acids affected predominantly the imaginary part of the complex permittivity in a nonlinear fashion, which could be described using a modified polaron theory model. These measurements served as the base for the development of a novel kind of interdigitated sensor that can measure the dielectric properties such as the relative permittivity and the intrinsic conductivity with high accuracy and precision, without being affected by temperature. This is a crucial step in the development of a suitable in-situ sensor, as it does not need to undergo a complicated temperature curve compensation or calibration using calibration-liquids. The interdigitated sensor, made using cost efficient printed circuit board technology, exhibited an accuracy in measuring the complex permittivity of about 99%. The sensing precision was practically limited by the measurement instrumentation using a developed Faraday shield for the sensor. The sensor was used in an oil degradation experiment. to verify the in-situ capability. These measurements of the relative permittivity and conductivity yielded values such as a degree of oxidation and acidity number. For the first time: it was possible to measure in-situ the complex dielectric properties of liquids at temperatures between 20 °C to 140 °C using interdigitated sensors.</p>


2021 ◽  
Author(s):  
◽  
Alexander Risos

<p>Monitoring of hydrocarbon oxidation is of great importance in many industry applications and reliable in-situ measurements are a challenge. In literature, it was shown that new versus degraded hydrocarbons show a change in their dielectric properties. In this thesis, the degradation of the oil was investigated by means of two thermal oil degradation experiments and the Fourier transform infrared spectroscopy. In addition, the impact. on the dielectric properties were determined using a novel type of a dielectric test cell that is temperature  compensated. It was found that ketones, acids and moisture were generated through a thermal oil aging process. These products have been found to change in the dielectric properties of the liquid which are reflected through the complex permittivity. Ketones increased largely the real part of the permittivity and organic acids affected predominantly the imaginary part of the complex permittivity in a nonlinear fashion, which could be described using a modified polaron theory model. These measurements served as the base for the development of a novel kind of interdigitated sensor that can measure the dielectric properties such as the relative permittivity and the intrinsic conductivity with high accuracy and precision, without being affected by temperature. This is a crucial step in the development of a suitable in-situ sensor, as it does not need to undergo a complicated temperature curve compensation or calibration using calibration-liquids. The interdigitated sensor, made using cost efficient printed circuit board technology, exhibited an accuracy in measuring the complex permittivity of about 99%. The sensing precision was practically limited by the measurement instrumentation using a developed Faraday shield for the sensor. The sensor was used in an oil degradation experiment. to verify the in-situ capability. These measurements of the relative permittivity and conductivity yielded values such as a degree of oxidation and acidity number. For the first time: it was possible to measure in-situ the complex dielectric properties of liquids at temperatures between 20 °C to 140 °C using interdigitated sensors.</p>


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
C. J. Buchko ◽  
P. M. Wilson ◽  
Z. Xu ◽  
J. Zhang ◽  
S. Lee ◽  
...  

The synthesis of well-defined organic molecules with unique geometries opens new opportunities for understanding and controlling the organization of condensed matter. Here, we study dendrimers and macrocycles which are synthesized from rigid phenyl-acetylene spacer units, Both units are solubilized by the presence of tertiary butyl groups located at the periphery of the molecule. These hydrocarbon materials form crystalline and liquid crystalline phases which have been studied by differential scanning calorimetry, hot stage optical microscopy, and wide-angle x-ray scattering (WAXS).The precisely defined architecture of these molecules makes it possible to investigate systematic variations in chemical architecture on the nature of microstructural organization. Here we report on the transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high resolution electron microscopy (HREM) studies of crystalline thin films formed by deposition of these materials onto carbon substrates from dilute solution. Electron microscopy is very attractive for gaining structural information on new molecules due to the scarcity of material to grow single crystals suitable for conventional crystallography.


Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
N Munkong ◽  
S Sireeratawong ◽  
A Wongnoppavich ◽  
N Lerdvuthisopon

2008 ◽  
Vol 26 (3) ◽  
Author(s):  
Leon Saba ◽  
Beata Likos-Grzesiak ◽  
Bożena Nowakowicz-Dębek ◽  
Hanna Bis-Wencel ◽  
Justyna Martyna ◽  
...  

2017 ◽  
Vol 26 (1) ◽  
pp. 27 ◽  
Author(s):  
B Saranya ◽  
T Sulfikarali ◽  
S Chindhu ◽  
A M Muneeb ◽  
N K Leela ◽  
...  

Antioxidant activity of sequential extracts of black pepper, ginger, turmeric and cinnamon was determined by DPPH assay, phosphomolybdate method and ferric reducing power method and compared with that of the synthetic antioxidant BHA. The results revealed that methanol extract of cinnamon has highest antioxidant potential followed by chloroform extract of turmeric. The antioxidant potential was also correlated with total phenol content.  


Sign in / Sign up

Export Citation Format

Share Document