CHARACTERIZATION OF EMISSIONS FROM TWO YARD-WASTE COMPOSTING FACILITIES

2000 ◽  
Vol 2000 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Michael K. Peterson ◽  
Dina L. Johnson ◽  
Richard C. Pleus
2003 ◽  
Vol 37 (6) ◽  
pp. 722-728 ◽  
Author(s):  
Valeria Alejandra Labud ◽  
Liliana Graciela Semenas ◽  
Francisca Laos

OBJECTIVE: Odorous compounds produced at the biosolids composting plant in Bariloche (NW Patagonia) attract a variety of insects, mainly belonging to the order Diptera. In order to characterize these flies, collected specimens were taxonomically identified, their community characteristics were described and their sanitary and synanthropic importance and autochthonous or introduced character were determined. METHODS: Sampling was performed from October 1999 until March 2000. Adults were collected using an entomological net, and larvae and puparia were obtained from the composting material and incubated to obtain adults. Richness, abundance and sex ratio were calculated. RESULTS: A total of 9 taxa of Diptera were identified: Sarconesia chlorogaster, Phaenicia sericata, Calliphora vicina, Cochliomya macellaria, Ophyra sp, Muscina stabulans, Musca domestica, Sarcophaga sp and Fannia sp. Specimens of Anthomyiidae, Acaliptratae and one larva of Eristalis tenax were also found. Ophyra sp. was the most abundant taxa. All the captured Diptera belonged to introduced taxa. Most of them are considered to be eusynanthropic and/or hemisynanthropic and have sanitary importance as they may cause myiasis and pseudomyiasis. The high number of females registered and the finding of immature stages indicated that flies can develop their complete life cycle on biosolid composting windrows. CONCLUSIONS: The characterization of flies obtained in this study may be useful for defining locations of urban or semi-urban composting facilities. It also highlights the importance of sanitary precautions at such plants.


Author(s):  
Vaughn M. Emmerson ◽  
Gerardo Diaz

Biomass is essentially organic garbage obtained from many sources of dead or live vegetation including yard waste. According to recent data, approximately sixty million bone dry tons of biomass are produced in California each year [1]. Of this, only five million tons are used for the generation of electricity. At a global scale, 8700 Tg of biomass (dry matter) were burned without energy recovery in 1991. This number has increased especially in developing countries with the main sources being the savannas, agricultural waste, tropical forests, and fuel wood. Inefficient burning of waste, through combustion in open-air or in open dumps are a significant source of pollutants leading to possible health effects. An alternative to open air combustion is gasification, which involves the conversion of biomass to generate synthesis gas (syngas) by adding heat and limited amounts of oxygen. Several gasifying agents can be utilized, but air is commonly used in small-scale gasifiers. The use of air causes a large molar fraction of nitrogen in the syngas composition. This papers shows the experimental results obtained with a commercially available small-scale downdraft gasifier. Woodchips obtained from a nearby landfill are used as input to the gasifier and temperatures, flow rates, and syngas composition are reported and analyzed.


2000 ◽  
Vol 125 (6) ◽  
pp. 765-770 ◽  
Author(s):  
Annette S. Bucher ◽  
Manfred K. Schenk

Heavy metal-sensitive `Express Orchid' petunias (Petunia ×hybrida Hort Vilm.-Andr. `Express Orchid') were grown in substrates of 2 green yard waste compost: 3 peat (v/v) with target Cu contents of 100 and 200 mg·kg-1 at varying pH. Iron supply was also varied. Copper contents of the substrate were determined by H2O, NH4NO3, NH4OAc, CaCl2, CaCl2-DTPA, and aqua regia extraction. Plant Cu concentration increased with increasing Cu supply and decreasing pH, indicating that Cu phytoavailability depended on substrate pH. Extraction of fresh substrates with CaCl2-DTPA provided a good prediction of plant Cu concentration and reflected well the influence of pH on Cu phytoavailability. The percentage of CaCl2-DTPA extractable Cu increased with decreasing pH. Extractions of Cu with NH4NO3, H2O, NH4OAc, and CaCl2 resulted in very low extractable amounts and hence were not suitable. Plants showed Cu toxicity induced iron-like deficiency chlorosis, which was alleviated by additional Fe supply. This Fe supply did not seem to affect total Fe concentration of petunias, but reduced Cu concentration of the shoots. Since yield reduction was not observed, the occurrence of chlorosis during the culture period was chosen as the toxicity parameter, resulting in a Cu threshold toxicity level of 12.3 mg.kg-1 plant dry weight. From this, a threshold toxicity level for CaCl2-DTPA extractable Cu in compost-peat substrates of 3 mg.L-1 substrate was determined. Chemical name used: diethylenetriamine-pentaacetic acid (DTPA).


2020 ◽  
Vol 13 (1) ◽  
pp. 263
Author(s):  
Lorenzo Maria Cafiero ◽  
Margherita Canditelli ◽  
Fabio Musmeci ◽  
Giulia Sagnotti ◽  
Riccardo Tuffi

Interest in small scale composting systems is currently growing, and this in turn raises the question of whether the compostable bags are as suitable as in industrial composting facilities. In this work the physical degradation percentage of compostable lightweight bioplastic bags in two types of composter was examined. The main goal was to understand whether the mild biodegrading conditions that occur in electromechanical or static home composters are sufficient to cause effective bag degradation in times consistent with the householders’ or operators’ expectations. Bags, which complied with standard EN 13432, were composted in a number of 600 L static home composters, which were run in different ways (e.g., fed only with vegetables and yard waste, optimizing the humid/bulking agent fraction, poorly managed) and a 1 m3 electromechanical composter. Six months of residence time in static home composters resulted in 90–96 wt% degradation depending on the management approach adopted, and two months in the electromechanical composter achieved 90 wt%. In the latter case, three additional months of curing treatment of the turned heaps ensured complete physical degradation. In conclusion, in terms of the level and times of physical degradation, the use of compostable bioplastic bags appeared promising and consistent with home composting practices.


1998 ◽  
Vol 25 (5) ◽  
pp. 967-973 ◽  
Author(s):  
C E Timms ◽  
B W Baetz

Many communities are facing serious solid waste disposal problems and considerable efforts are being made to reduce the quantities of municipal solid waste requiring disposal. Centralized composting of leaf and yard materials is gaining widespread popularity across North America in an attempt to divert these materials from landfill and process them into a valuable organic soil amendment for agricultural and horticultural purposes. To ensure the success of new centralized composting facilities, they must be adequately sized so that the incoming organic material can be suitably accommodated. This note presents a structured methodology for the sizing of centralized window composting facilities for leaf and yard materials, with land area requirements being determined for receiving, preprocessing, processing, and finishing operations. This approach may prove to be a useful tool to municipalities in the preliminary design of their centralized leaf and yard waste composting facilities.Key words: composting, municipal solid waste management, facility sizing.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document