Differentiation of Mass and Flow Limited Rainfall-Runoff Events for Overland Flow from Small Urban Catchments

2006 ◽  
Vol 2006 (6) ◽  
pp. 5549-5558 ◽  
Author(s):  
John Sansalone ◽  
Yuhong Sheng ◽  
Gianfranco Becciu
Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 299 ◽  
Author(s):  
R. J. Loch

This research was carried out to quantify the role of vegetative cover in reducing runoff and erosion from rehabilitated mined land. Duplicate plots 1.5 m wide and 12 m long were prepared on a rehabilitated area of the Meandu Mine, Tarong, with vegetative cover of 0, 23%, 37%, 47%, and 100%. The area had a uniform 15% slope, and there were no rill or gully lines present. Simulated rain equivalent to a 1 : 100 year storm was applied to the plots, and runoff and erosion were measured. Infiltration totals and rates increased strongly with increasing vegetative cover. There was visibly greater infiltration under vegetation. Erosion from the simulated storm was greatly reduced by vegetative cover, declining from 30–35 t/ha at 0% vegetative cover to 0.5 t/ha at 47% cover. Reductions in erosion at lower levels of vegetative cover were greater than predicted by the cover/erosion relationship used in the USLE. The dominantly stoloniferous growth habit of the grass at this site may have increased the effectiveness of vegetative cover in this study. To allow the data to be extrapolated to slopes longer than 12 m, a series of overland flows were applied to the upslope boundaries of the plots, simulating flows on slopes up to 70 m long. Detachment and transport of sediment by applied overland flow was similarly reduced by vegetative cover, and results from the overland flow study also indicate that for slopes up to 70 m long with grass cover of 47% or greater, erosion rates will be minimal, even under extreme rainfall/runoff events.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2028
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Roland Price ◽  
Arlex Sanchez

Rainfall-runoff transformation on urban catchments involves physical processes governing runoff production in urban areas (e.g., interception, evaporation, depression, infiltration). Some previous 1D/2D coupled models do not include these processes. Adequate representation of rainfall–runoff–infiltration within a dual drainage model is still needed for practical applications. In this paper we propose a new modelling setup which includes the rainfall–runoff–infiltration process on overland flow and its interaction with a sewer network. We first investigated the performance of an outflow hydrograph generator in a 2D model domain. The effect of infiltration losses on the overland flow was evaluated through an infiltration algorithm added in a so-called Surf-2D model. Then, the surface flow from a surcharge sewer was also investigated by coupling the Surf-2D model with the SWMM 5.1 (Storm Water Management Model). An evaluation of two approaches for representing urban floods was carried out based on two 1D/2D model interactions. Two test cases were implemented to validate the model. In general, similar results in terms of peak discharge, water depths and infiltration losses against other 1D/2D models were observed. The results from two 1D/2D model interactions show significant differences in terms of flood extent, maximum flood depths and inundation volume.


2014 ◽  
Vol 40 (3) ◽  
pp. 75-86 ◽  
Author(s):  
Kazimierz Banasik ◽  
Adam Krajewski ◽  
Anna Sikorska ◽  
Leszek Hejduk

Abstract Runoff estimation is a key component in various hydrological considerations. Estimation of storm runoff is especially important for the effective design of hydraulic and road structures, for the flood flow management, as well as for the analysis of land use changes, i.e. urbanization or low impact development of urban areas. The curve number (CN) method, developed by Soil Conservation Service (SCS) of the U.S. Department of Agriculture for predicting the flood runoff depth from ungauged catchments, has been in continuous use for ca. 60 years. This method has not been extensively tested in Poland, especially in small urban catchments, because of lack of data. In this study, 39 rainfall-runoff events, collected during four years (2009–2012) in a small (A=28.7 km2), urban catchment of Służew Creek in southwest part of Warsaw were used, with the aim of determining the CNs and to check its applicability to ungauged urban areas. The parameters CN, estimated empirically, vary from 65.1 to 95.0, decreasing with rainfall size and, when sorted rainfall and runoff separately, reaching the value from 67 to 74 for large rainfall events.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 110
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Arlex Sanchez

This paper presents the performance quantification of different green-grey infrastructures, including rainfall-runoff and infiltration processes, on the overland flow and its connection with a sewer system. The present study suggests three main components to form the structure of the proposed model-based assessment. The first two components provide the optimal number of green infrastructure (GI) practices allocated in an urban catchment and optimal grey infrastructures, such as pipe and storage tank sizing. The third component evaluates selected combined green-grey infrastructures based on rainfall-runoff and infiltration computation in a 2D model domain. This framework was applied in an urban catchment in Dhaka City (Bangladesh) where different green-grey infrastructures were evaluated in relation to flood damage and investment costs. These practices implemented separately have an impact on the reduction of damage and investment costs. However, their combination has been shown to be the best action to follow. Finally, it was proved that including rainfall-runoff and infiltration processes, along with the representation of GI within a 2D model domain, enhances the analysis of the optimal combination of infrastructures, which in turn allows the drainage system to be assessed holistically.


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Luiz Claudio Galvão do Valle Junior ◽  
Dulce Buchala Bicca Rodrigues ◽  
Paulo Tarso Sanches de Oliveira

ABSTRACT The Curve Number (CN) method is extensively used for predict surface runoff from storm events. However, remain some uncertainties in the method, such as in the use of an initial abstraction (λ) standard value of 0.2 and on the choice of the most suitable CN values. Here, we compute λ and CN values using rainfall and runoff data to a rural basin located in Midwestern Brazil. We used 30 observed rainfall-runoff events with rainfall depth greater than 25 mm to derive associated CN values using five statistical methods. We noted λ values ranging from 0.005 to 0.455, with a median of 0.045, suggesting the use of λ = 0.05 instead of 0.2. We found a S0.2 to S0.05 conversion factor of 2.865. We also found negative values of Nash-Sutcliffe Efficiency (to the estimated and observed runoff). Therefore, our findings indicated that the CN method was not suitable to estimate runoff in the studied basin. This poor performance suggests that the runoff mechanisms in the studied area are dominated by subsurface stormflow.


2016 ◽  
Vol 14 (3) ◽  
pp. 443-459 ◽  
Author(s):  
Keewook Kim ◽  
Gene Whelan ◽  
Marirosa Molina ◽  
S. Thomas Purucker ◽  
Yakov Pachepsky ◽  
...  

A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying release of Escherichia coli, enterococci, and fecal coliforms from manures applied at typical agronomic rates evaluated the efficacy of the Bradford–Schijven model modified by adding terms for release efficiency and transportation loss. Two complementary, parallel approaches were used to calibrate the model and estimate microbial release parameters. The first was a four-step sequential procedure using the inverse model PEST, which provides appropriate initial parameter values. The second utilized a PEST/bootstrap procedure to estimate average parameters across plots, manure age, and microbe, and to provide parameter distributions. The experiment determined that manure age, microbe, and season had no clear relationship to the release curve. Cattle solid pats released microbes at a different, slower rate than did poultry dry litter or swine slurry, which had very similar release patterns. These findings were consistent with other published results for both bench- and field-scale, suggesting the modified Bradford–Schijven model can be applied to microbial release from manure.


2015 ◽  
Vol 63 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Laurent Pfister ◽  
Carlos E. Wetzel ◽  
Núria Martínez-Carreras ◽  
Jean François Iffly ◽  
Julian Klaus ◽  
...  

Abstract Hydrological processes research remains a field that is severely measurement limited. While conventional tracers (geochemicals, isotopes) have brought extremely valuable insights into water source and flowpaths, they nonetheless have limitations that clearly constrain their range of application. Integrating hydrology and ecology in catchment science has been repeatedly advocated as offering potential for interdisciplinary studies that are eventually to provide a holistic view of catchment functioning. In this context, aerial diatoms have been shown to have the potential for detecting of the onset/cessation of rapid water flowpaths within the hillslope-riparian zone-stream continuum. However, many open questions prevail as to aerial diatom reservoir size, depletion and recovery, as well as to their mobilisation and transport processes. Moreover, aerial diatoms remain poorly known compared to freshwater species and new species are still being discovered. Here, we ask whether aerial diatom flushing can be observed in three catchments with contrasting physiographic characteristics in Luxembourg, Oregon (USA) and Slovakia. This is a prerequisite for qualifying aerial diatoms as a robust indicator of the onset/cessation of rapid water flowpaths across a wider range of physiographical contexts. One species in particular, (Hantzschia amphioxys (Ehr.) Grunow), was found to be common to the three investigated catchments. Aerial diatom species were flushed, in different relative proportions, to the river network during rainfall-runoff events in all three catchments. Our take-away message from this preliminary examination is that aerial diatoms appear to have a potential for tracing episodic hydrological connectivity through a wider range of physiographic contexts and therefore serve as a complementary tool to conventional hydrological tracers.


Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


2005 ◽  
Vol 2 (3) ◽  
pp. 639-690 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije

Abstract. Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. Through flux exchanges among the different spatial domains of the REW, surface and subsurface water interactions are fully coupled. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work is the first full application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically based hydrological modelling.


2021 ◽  
Author(s):  
Denis Flynn ◽  
Warren Roche

<div>The soil can be modelled as a porous medium in which the three phases of matter coexist and produce the emergent phenomenon of hysteresis.</div><div>Rate-independent hysteresis is a nonlinear phenomenon where the output depends not only on the current input but also the previous history of inputs to the system. In multiphase porous media such as soils, the hysteresis is in the relationship between the soil-moisture content, and the capillary pressure.</div><div>In this work, we develop a simplified hysteretic rainfall-runoff model consisting of the following subsystems that capture much of the physics of flow through a slab of soil:</div><div>1) A slab of soil where rainfall enters and if enough water is present in the soil, it will subsequently drain into the groundwater reservoir. This part of the model is represent by ODE with a Preisach operator.</div><div>2) A runoff component: If the rainfall exceeds the maximum infiltration rate of the soil, the excess will become surface runoff. This part of the model is represented by a series of two hysteretic reservoirs instead of the two linear reservoirs in the literature.</div><div>3) A ground water storage and outflow subsystem component: this is also modelled by a hysteretic reservoir. Finally, the outputs from the groundwater output and the overland flow are combined to give the total runoff. We will examine this model and compare it with non-hysteretic case both qualitatively and quantitively.</div>


Sign in / Sign up

Export Citation Format

Share Document