scholarly journals Synthesis and Characterization of Lithium Iron Phosphate Carbon Composite (LFP/C) using Magnetite Sand Fe3O4

2020 ◽  
Vol 9 (1) ◽  
pp. 16-22
Author(s):  
Zuffa Anisa ◽  
◽  
Mochammad Zainuri ◽  

Lithium Ferro Phosphate Carbon Composite (LFP/C) had been synthesized using solid-state reaction method. Magnetite sand Fe3O4 was used as Fe- source in LFP/C synthesized. Calcination temperature of the sample performed at 400, 500, and 600°C. The phase and composition of samples determined by Rietveld analysis of X-ray diffraction (XRD) pattern. The dominant identified phase at 400°C was diphosphate LiFeP2O7, and the others phases were nasicon Li3Fe2(PO4)3 and hematite Fe2O3. As the temperature getting higher the diphosphate phase LiFeP2O7 transform to nasicon Li3Fe2(PO4)3.The chemical bonds, lattice vibration and other structural features of the sample were investigated using FTIR spectroscopy in range of 1400 – 400 cm-1. Specific vibration modes in LFP-1 to LFP-3 for each bonding were shown by the high intense in certain wavenumber.

2008 ◽  
Vol 58 ◽  
pp. 205-210 ◽  
Author(s):  
Xiang Zhong Ren ◽  
Xi Li ◽  
Pei Xin Zhang ◽  
Jian Hong Liu ◽  
Qian Ling Zhang ◽  
...  

A series of lithium iron phosphate /polypyrrole (LiFePO4/PPy) composite powders were synthesized by chemical oxidation method with different doping agent and oxidation agent. The composite powders were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectrum (FTIR), and X-ray diffraction (XRD). The results showed that the composite powders composed of PPy and LiFePO4. And the doping of polypyrrole in LiFePO4 could weaken the XRD intensity of LiFePO4 , but could not destroy its crystallization. With the increase of pyrrole in LiFePO4/ PPy composite powders, the polypyrrole on the surface of LiFePO4 increased and dispersed more homogeneously. Thermogravimetric analysis (TGA) data indicated the heat-stability of LiFePO4/PPy was very good that the composite powders would not oxidate till 300°C in the air flow.


Author(s):  
Elizabeth Putri Permatasari ◽  
Mega Permata Rindi ◽  
Agus Purwanto

<p>One of the most finest materials for lithium ion battery nowadays is lithium iron phosphate or LiFePO4. Lithium iron phosphate was synthesized with solid state reaction method  by  optimizing  the  variable  of  material  and  temperature.  The  variable  for calcination temperatures were 700oC, 800oC, and 900oC while the basic materials as Fe sources were Fe2O3 and FeSO4. Particles morphologies and quantity of crystal were investigated in details by X-ray diffraction analysis XRD. XRD imaging showed diffraction of nanoparticles LiFePO4 with crystal quantity 40,4% (800oC) and 59,1% (900oC) of materials Fe2O3,which the most quantity from other samples. Thus, chatode materials were made from LiFePO4 that synthesized at calcination temperatures 800oC and 900oC. In conclusion the material chatode from LiFePO4 that had been synthesized had so many impurities because it was hard to get single phase of nanoparticles LiFePO4 and need more improvement in optimizing the process condition for ideal chatode material.</p>


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2021 ◽  
Author(s):  
nejeh hannachi ◽  
faouzi hlel

Abstract Two new organic-inorganic hybrid materials, (C6H10N2).Cl2 (I) and [C6H10N2]2ZnCl4 (II), have been synthesized by hydrothermal method and characterized by single-crystal X-ray diffraction and XRD pattern investigations. These two compounds are crystallized in the monoclinic system; C2/c space group. In the both structures, the anionic-cationic entities are interconnected by hydrogen bonding contacts and p-p Interaction forming three-dimensional networks. Intermolecular interactions were investigated by Hirshfeld surfaces and the contacts of the four different chloride atoms in (II) were compared. The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid state 13C NMR spectroscopy.


2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2006 ◽  
Vol 972 ◽  
Author(s):  
Atmane Ait-Salah ◽  
Chintalapalle V Ramana ◽  
François Gendron ◽  
Jean-François Morhange ◽  
Alain Mauger ◽  
...  

AbstractWe present the synthesis and characterization of a novel lithium iron polyphosphate LiFe2P3O10 prepared by wet-chemical technique from nitrate precursors. The crystal system is shown to be monoclinic (P21/m space group) and the refined cell parameters are a=4.596 Å, b=8.566 Å, c=9.051 Å and β=97.46°. LiFe2P3O10 has a weak antiferromagnetic ordering below the Néel temperature TN=19 K. Electrochemical measurements carried out at 25 °C in lithium cell with LiPF6-EC-DEC electrolyte show a capacity 70 mAh/g in the voltage range 2.7-3.9 V.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1764-C1764
Author(s):  
Guilherme Calligaris ◽  
Ana Paula Ribeiro ◽  
Adenilson dos Santos ◽  
Lisandro Cardoso

The characterization of the fat components becomes very useful in the formulation of shortening, margarines and fatty products due to their unique properties of plasticity, texture, solubility and aeration. The qualitative analysis obtained by X-ray diffraction (XRD) can be further improved in order to fulfill the lack of information on the triacylglycerol (TAG) in the hardfat systems aiming a complete polymorph characterization. In this work, as an attempt to quantify the distinct β and β' TAG polymorphs, XRD was combined with Rietveld refinement method and applied to two types of samples: mixtures (M) and blended hardfats (B) samples involving fully hydrogenated of soybean (FHSO) and palm (FHPO) oils. M-samples were prepared with linear concentrations of FHSO (β) and FHPO (β') and their Rietveld analysis have provided the expected content trend through the involved polymorphic phases with a very good agreement (~5%). This result validates the Rietveld method applicability on this kind of materials. The Rietveld method applied for B-samples has shown that β' polymorphic form prevails over the β-form, even for samples originally prepared with FHSO (β)/FHPO (β') = 60/40 ratio (see figure). This result indicates the influence of the seeding process (earlier crystallization of β' phase). This first quantitative approach for blended samples represents a very useful contribution towards the full characterization of fats.


2004 ◽  
Vol 03 (06) ◽  
pp. 749-755 ◽  
Author(s):  
YING LI ◽  
SUO HON LIM ◽  
TIM WHITE

The properties influencing the photocatalytic activity of TiO 2 particles have been suggested to include the surface area, crystallinity, crystallite size and crystal structure. Therefore, manipulation of the microstructure of titania, especially of nanocrystalline powders, is very important in the preparative process. In this study, nanocrystalline TiO 2 powders with controlled particle size and phase composition were synthesized at low temperature (<80°C) by a modified sol–gel method. The effects of gelation temperature were systematically investigated. It was found that this parameter played a critical role in determining the crystallinity of single phase anatase. With increasing gelation temperature, the crystallinity of anatase improved initially and then decreased if the temperature was raised to 80°C. These nanomaterials were characterized comprehensively by powder X-ray diffraction (including Rietveld analysis), high-resolution transmission electron microscopy, DSC/TGA thermal analysis and UV–Vis spectrometry.


Sign in / Sign up

Export Citation Format

Share Document